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1. Generalized least squares

1.1. Best linear unbiased estimator

y=XB+u (1.1)

whereyis aT x 1 vector of observations on a dependent variaklis,aT x k nonstochastic matrix
of rankk, anduis aT x 1 vector of disturbances (errors) such that

E(uy = 0
V(u = oV (1.2)

andV is a knownT x T positive definite matrix. Then the least-squares estimator
B=(XX)"'xly (1.3)
is unbiased but does not have minimal variance. The covariance maf}iisof
V(B) = a?(X'X) " IX'VX(X'X) (1.4)

so that the usual formula .
V(B) = a?(X'X) ™ (1.5)

is not valid.
The factV is positive definite entails th@¥| # 0, so there is no perfect correlation between the
disturbances. Further, there exists a nonsingilarT matrix P such that

PVP = I1, (1.6)
Py vtpt = (PvP)l=1Ir. (1.7)

Multiply both sides of (1.1) byP:
Py = PXB+Pu. (1.8)

We get in this way the transformed model

Y. = X. B+ U, (1.9)
where
y. =Py, X,=PX, u,=Pu (1.10)
E(u,) = O, (1.12)
V(u,) = E[PuwP]=0c’PVP =0?l. (1.12)



Then
R ;N1
Bo=(Xx.) "Xy.
is the best linear unbiased estimatoiBof
EBs) = B
V(Bg) = o*(XX)*

We can also write: A .
B = (X'PPX) " X'PPy= (X'V7IX) "XV ly
for
PVP' =1t =V=P1P)t=(PP)!
=V 1=PP.

BG is called the generalized least squares estimatgr:of
E (BG) = B7
V(Bs) = o%(XX)=0?(xvx) ",
We know that[? minimizes

(y—XB) (y—XB) .

Similarly, Bg minimizes

(Y —XB) (Y« —X.B) = (Py—PXB) (Py—PXp)
= (y—XB)'PP(y—XB)
= (y=XB)'VH(y—XB)

Thisis Why[AS’G is also called aveighted |least squares estimator off3.

(1.13)

(1.14)

(1.15)

(1.16)
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1.2. Gaussian case

Suppose
u~NJ[0,0%V] (1.19)

Then A
Be~N [B, o? (X’V*X)‘l} (1.20)

is the best mean squares unbiased estimatfr of
We can build tests and confidence intervals in the usual manner by usingrii®tmed model

(Py) = (PX) B + (Pu) (1.21)

instead of
y=XB+u. (1.22)



2. Estimation with heteroskedasticity

2.1. Known variance structure

Suppose
@ 0 -~ 0
0 d2 ... 0
Elw]=0?| . ? . | =0?v. (2.1)
0 O d%
The variance of each elementwis then
V(w) = of = d?o? (2.2)
and we have:
yt:><{B+ut, t:].,...,T
v 1 Ut
= — +7’ tzl,,T 23
& th{B o (2.3)
y*t:X;tB—i-U*t,t:l,...,T (24)
W d?
V(U2 :V():GZ:UZ 2.5
B =v(g) ="z (2:9)
1/dz 0 - 0
0O 1/d, --- 0
po| O Yo S (2.6)
0 0 - 1/dv

2.2.  Unknown variance structure

Itis rare thatdy, ..., dr are known.
It is impossible to estimat€ + k parameters witd observations (incodental parameter problem)..
One must make hypotheses on the form of the variance structure.

1. d? = c(xk)?
wherex, is one of the explanatory variables or another variable. Then

Yt 1 U
N Spr 2 t=1, T
Xk thx{B Xk
% <Ut> = o’c=co? (2.7)
Xk

2. of = C(Eyt)2 = C(X{B)z



Then
Wt

E(yt)

A difficulty here is thatE(y;) = X8 is unknown. This suggests a two-step procedure.

_ 1 U
— E(yt)X(B—i_ ) t=1,...,T (2.8)

1. EstimateB par OLS. This is reasonable becan[f]s'es unbiased.

2. The model is then transformed according to:
xB  \xB XB
In this way, the model becomes “approximately homoskedastic”. TF@rge this leads to
efficient estimators and valid tests and confidence intervals.



