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1. Generalized least squares

1.1. Best linear unbiased estimator

y = Xβ +u (1.1)

wherey is aT ×1 vector of observations on a dependent variable,X is aT ×k nonstochastic matrix
of rankk, andu is aT ×1 vector of disturbances (errors) such that

E(u) = 0

V(u) = σ2V (1.2)

andV is a knownT ×T positive definite matrix. Then the least-squares estimator

β̂ = (X ′X)−1X ′y (1.3)

is unbiased but does not have minimal variance. The covariance matrix ofβ̂ is

V(β̂ ) = σ2(X ′X)−1X ′V X(X ′X)−1 (1.4)

so that the usual formula
V(β̂ ) = σ2(X ′X)−1 (1.5)

is not valid.
The factV is positive definite entails that|V | 6= 0, so there is no perfect correlation between the

disturbances. Further, there exists a nonsingularT ×T matrix P such that

PV P′ = IT , (1.6)

(P′)−1V−1P−1 = (PV P′)−1 = IT . (1.7)

Multiply both sides of (1.1) byP :
Py = PXβ +Pu . (1.8)

We get in this way the transformed model

y∗ = X∗β +u∗ (1.9)

where
y∗ = Py , X∗ = PX , u∗ = Pu (1.10)

E(u∗) = 0, (1.11)

V(u∗) = E
[

Puu′P′
]

= σ2PV P′ = σ2IT . (1.12)
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Then

β̂ G =
(

X
′

∗X∗

)−1
X

′

∗y∗ (1.13)

is the best linear unbiased estimator ofβ :

E(β̂ G) = β
V(β̂ G) = σ2(X

′

∗X∗)
−1. (1.14)

We can also write:
β̂ G =

(

X ′P′PX
)−1

X ′P′Py =
(

X ′V−1X
)−1

X ′V−1y (1.15)

for
PV P′ = IT ⇒V = P−1(P′)−1 = (P′P)−1

⇒V−1 = P′P .
(1.16)

β̂ G is called the generalized least squares estimator ofβ :

E

(

β̂ G

)

= β ,

V

(

β̂ G

)

= σ2
(

X
′

∗X∗

)

= σ2(

X ′V−1X
)−1

. (1.17)

We know thatβ̂ minimizes
(y−Xβ )′ (y−Xβ ) . (1.18)

Similarly, β̂ G minimizes

(y∗−X∗β )′ (y∗−X∗β ) = (Py−PXβ )′ (Py−PXβ )

= (y−Xβ )′ P′P(y−Xβ )

= (y−Xβ )′V−1(y−Xβ )

This is whyβ̂ G is also called aweighted least squares estimator ofβ .
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1.2. Gaussian case

Suppose
u ∼ N

[

0,σ2V
]

(1.19)

Then
β̂ G ∼ N

[

β , σ2(

X ′V−1X
)−1

]

(1.20)

is the best mean squares unbiased estimator ofβ .
We can build tests and confidence intervals in the usual manner by using the transformed model

(Py) = (PX)β +(Pu) (1.21)

instead of
y = Xβ +u . (1.22)
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2. Estimation with heteroskedasticity

2.1. Known variance structure

Suppose

E
[

uu′
]

= σ2











d2
1 0 · · · 0
0 d2

2 · · · 0
...

...
...

...
0 0 · · · d2

T











= σ2V . (2.1)

The variance of each element ofu is then

V(ut) = σ2
t = d2

t σ2 (2.2)

and we have:
yt = x′tβ +ut , t = 1, . . . , T

yt

dt
=

1
dt

x′tβ +
ut

dt
, t = 1, . . . , T (2.3)

y∗t = x′∗tβ +u∗t , t = 1, . . . , T (2.4)

V(u2
∗t) = V

(

ut

dt

)

= σ2 d2
t

d2
t

= σ2 (2.5)

P =











1/d1 0 · · · 0
0 1/d2 · · · 0
...

...
...

...
0 0 · · · 1/dT











(2.6)

2.2. Unknown variance structure

It is rare thatd1, . . . , dT are known.
It is impossible to estimateT + k parameters withT observations (incodental parameter problem)..
One must make hypotheses on the form of the variance structure.

1. d2
t = c(xtk)

2

wherexk is one of the explanatory variables or another variable. Then

yt

xtk
=

1
xtk

x′tβ +
ut

xtk
, t = 1, . . . , T

V

(

ut

xtk

)

= σ2c = cσ2 (2.7)

2. σ2
t = c(Eyt)

2 = c(x′tβ )2

4



Then
yt

E(yt)
=

1
E(yt)

x′tβ +
ut

E(yt)
, t = 1, . . . , T (2.8)

A difficulty here is thatE(yt) = x′tβ is unknown. This suggests a two-step procedure.

1. Estimateβ par OLS. This is reasonable becauseβ̂ is unbiased.

2. The model is then transformed according to:

yt

x′t β̂
=

(

1

x′t β̂
x′t

)

β +
ut

x′t β̂
. (2.9)

In this way, the model becomes “approximately homoskedastic”. ForT large this leads to
efficient estimators and valid tests and confidence intervals.

5


