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1. Generalized least squares

1.1. Best linear unbiased estimator

y=XB+u (1.1)

wherey is aT x 1 vector of observations on a dependent variaklés aT x K
nonstochastic matrix of rank anduis aT x 1 vector of disturbances (errors)
such that

E(uy = 0
V(u) = o?V (1.2)

andV is a knownT x T positive definite matrix. Then the least-squares estimatot
B = (X'X)" Xy (1.3)
IS unbiased but does not have minimal variance. The covariaatex ofB 5
V(B) = g?(X'X) X VX(X'X) ™ (1.4)

so that the usual formula A
V(B) = a*(X'X)™* (1.5)
IS not valid.
The factV is positive definite entails tha¥ | = 0, so there is no perfect corre-

lation between the disturbances. Further, there exists ammrarT x T matrix
P such that

PVP = Iy, (1.6)
(P/)—lv—lp—l _ (p\/p’)—1:|.|._ (1.7)

Multiply both sides of (1.1) by :
Py = PXf + Pu. (1.8)



We get in this way the transformed model

Y. = X8+ U, (1.9)
where
V. =Py, X.=PX, u.=Pu (1.10)
E(u,) = 0, (1.11)
V(u,) = E[PuuP]= a’PVP = d?ly. (1.12)
Then
~ / -1 !
is the best linear unbiased estimatoiBof
E(Bs) = B
V(B) = 0°(XX)™ (1.14)
We can also write:
Be= (X'PPX) "X'PPy= (x’v—lx)‘lx’v—ly (1.15)
for (p)t— (PP) L
PVP =1l =V=P*(P) "= (PP)”
=V 1=PP. (1.16)
BG is called the generalized least squares estimatgr:of
E (BG) — B7
V (BG) — g2 ()gx) = g2 (X'VIX) . (1.17)

We know thatﬁ minimizes

(y=XB)' (y—XB) . (1.18)



Similarly, B minimizes
(y* - X*B)/ (y* - X*B) — (Py_ PXB)/ (Py_ PXﬁ)

= (y—XB)'P'P(y—XpB)
= (y—=XB)'V(y—XB)

Thisis whyﬁG Is also called aveighted least squares estimator off3.



1.2. Gaussian case

Suppose
u~ NJ[0,0%V] (1.19)
Then A
Bc~N [B , 07 (X’V‘1X)‘1] (1.20)
is the best mean squares unbiased estimatBr of

We can build tests and confidence intervals in the usual mdnnasing the
transformed model

(Py) = (PX) B+ (Pu) (1.21)
instead of
y=XB+u. (1.22)



2. Estimation with heteroskedasticity

2.1. Known variance structure

Suppose i i
d 0 --- 0
E [uy] = o2 0 d§ 0 = o™V (2.1)
0 0 a
The variance of each elementuwfs then _
V(w) = o7 = d/o’ (2.2)
and we have:
Ye=%B+uw, t=1..T
gzéxgﬁﬂg, t=1,...,T (2.3)
Vi =X B+Ug, t=1,...,T (2.4)
V(u3) =V (%) — 02%2 = 0o? (2.5)
1/d, 0 - O
p—| 0 Yk O (2.6)
B

2.2. Unknown variance structure

It is rare thatd,, ..., dr are known.

It is impossible to estimatd + k parameters withl' observations (incodental
parameter problem)..

One must make hypotheses on the form of the variance structure.

1. d2 = ¢ (%)’



wherex, is one of the explanatory variables or another variable. Then

Wi 1 Ut
— = — +—, t=1 ..., T
Xtk thx{B Xtk

% (i) = 0%c=co? (2.7)
Xtk

2. 02 = c(Ey)? = c(XB)?
Then y
E@UZ:E()‘B (M)

A difficulty here is thatE(y;) = X8 is unknown. This suggests a two-step
procedure.

t=1,...,T (2.8)

1. Estimate3 par OLS. This is reasonable becaﬁisis unbiased.

2. The model is then transformed according to:

yt ( 1 /) Uk

== | ==X B+ . (2.9)
xB  \xP e
In this way, the model becomes “approximately homoskedadtiof' T large
this leads to efficient estimators and valid tests and confielariervals.




