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1. Model

Consider the model
p=x0+u, t=1,...,T

where

U = pUp_1+¢&, t=...,0,1, 2 ...

lpl <1,

{e:;},_, is a sequence of i.i.d. disturbances,

E(gt):(), V(St):UQ,vt.

Under these hypotheses,

and, in particular,

2. Transformed model
Model (1.1) can be transformed as follows:

yy =z, 0+u;, t=1,...,T

where
yi = yt(p)z{ L=y, =1
! Yt — PYt—1 t:277T
o= — Vl_prla t=1
Tt = It(p)_{xt—pxt_l, t=2,....T
S V1—=p2Pu, t=1
Lo Et s t:2,,T

i.e

{ L—p2yr=1=p 2B+ /1—-p?u,
Ye

— Y1 = (v — pry1) B+ ey,

(1.1)

(1.2)

(1.3)
(1.4)

(1.5)

(2.1)

(2.2)



3. Estimation

The method of generalized least squares (with knpyweads one to minimize with respect
to 3 the function:

2

Si(pB) = ZLi [ye(p) — e (p) ]
= (1= %) (n — 218" + 5L, [0 — pwecr) — (2 — piy)' 3]

The main problem here comes from the fact thas generally unknown and must be
estimated. We shall distinguish between two groups of ntstho estimate this model:

1. approximate generalized least squares

(a) without correction for the first observation,
(b) with correction for the first observation;

2. maximum likelihood (ML).

3.1. Approximate generalized least squares

This method involves two main steps:

1. we estimate by an appropriate estimatoy

2. we estimates by minimizing S; (p, ) with respect ta3 [or by minimizing an ap-
proximation ofS; (p, 4)].

From there, we can distinguish between types of approadmending on whether the
first observation is taken to be fixed or random.

3.1.1. Methods where the first observation is taken as given

To avoid the complications entailed by applying a specais¢formation to the first obser-
vation, we consider the regression:

Yo — pye1 = (v — pre1) B+er, t=2,...,T. (3.1)

In other wordsy; is taken as given (we condition an). For p known (or given), we can
estimate’ by applying ordinary least squares (OLS) to (3.1), whiclgsiealent to solving
the problem:

min 3 (p, B)



where

S(p,B8) = ZL,[y(p)— 2 (p) 5]
= Ethz [(yt = pyi1) — (zr — P%-ﬂlﬁ}

Similarly, for 8 known, we can estimateby estimate the equation:

2

yt_x:fﬁ:(yt—l_xéflﬁ)p_'_gt? t:27"'7T7 (32)

which is equivalent to solving the problem:
min S (p, ) .
P

The only remaining problem now consists in estimagnd his will be done by solving the
problem:

min S (p, ) .
P8
Several algorithms have been proposed to do this.
3.1.1.1. Hildreth-Lu algorithm .
1. Determine agrid for-1 < p < 1, eg,,
p=-—0,95-0,90, ...,0,90,0,95

or
p=-0,99,-0,98,...,0,98,0,99.

2. For eacly, estimate (3.1) par OLS:

~

min S (p, 8) = B =5 (p)
3. Choose the value gfwhich minimizesS (p, 3) .

3.1.1.2. Cochrane-Orcutt algorithm .

1. Choose an initial value fgr : p,. For example, we can estimateby OLS on the
equation
Y = T8+ uy



which yieldsﬁo, and then estimate by

- T o - T 22
Po = Tiglylly—1/ 2y Uy

where )
ﬂt:yt—x;ﬁo, tzl,,T

2. Estimate (3.1) with = p, — [3,.
Estimate (3.2) witts = 3, — p,.
Estimate (3.1) withp = p; — 3,.
Estimate (3.2) withs = 3, — p,.
Etc.

3. We stop wherp changes by less than a certain percentagene tolerance of the
algorithm),e.g., 6 = 0.001.

3.1.1.3. Nonlinear estimation (Gauss-Newton) . The equation (1.1), far=2,..., T,
can be written:

Yy = 104wy
B+ pug_1 + &
= w;ﬂ—l—p(yt,l—x;_lﬂ)jtet, t=2,....T. (3.3)

The estimation of this equation can be viewed as a problenomtimear regression. Any
appropriate algorithm (for example, the Gauss-Newtonrélgn) can be used to estimate
the model and thug.

3.1.1.4. Durbin’s method . This method is based on the following reparametrization
of (3.3):

?/t—Pytfl:(ﬂft—ﬁ)xt—l)/ﬂ“‘gm t:27aT
hence

v o= pYi—1 + (v — pxtfl)/ﬂ + &4
= py1 T30 — i (pB) + &
pyi1+ o B+, B +e, t=2,....T. (3.4)

If we estimate (3.4) by OLS, the estimated coefficientfar, sayr;, is un estimator op.



3.1.2. Methods where the first observation is taken into acemt

After estimatingp, we estimate’ by settingp = p in (2.1) [or (2.2)],i.e. we minimize
(with respect tg3) the function:

S1(p,8) = (1=3%) (yr — 218 + L, [ — ) — (w1 — pria)' B

= (1= (- 28" +5(p,B) -

This method is often called the “Prais-Winsten method”. rétae as many variants of this
method as there are methods for estimaginip particular, we can estimajge:

1. by applying any of the methods described in 3.1.1;
2. by minimizing.S; (p, ) with respect top and 5 simultaneously [using a grid or a
nonlinear optimization algorithm].
3.2. Maximum likelihood

If we suppose that the are i.i.d. N [0, 2], the likelihood function ofyy, . .., yr is

L=1L (yl, e yT;ﬁ,p,a2) = 7.1—p2 exp{—w} (3.5)

(27T<f2)T/2 202

and the log-likelihood is

T T 1 S1(p, B)
lnL:—§1n(27r)—§ln02+§ln(1—p2)— o (3.6)

The maximum likelihood estimator can be obtained by maximgizn L with respect to
p, 3 ando?. If p andj are ML ML estimators op and3, we see easily that

52 = %51 (p, B) .

If we replaces? by %Sl (p, 3), we see that we can obtainand 5 by minimizing (with
respect tg and [3) the function:

In(L*) = —% In (27) — gln {%Sl (p, ﬁ)] + % In (1—p%) — % (3.7)

- _g {1n(27r)+1+1n (%)} —gln[Sl (pﬂ)H%ln (1=p7)



