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1. Model

Consider the model
yt = x′

tβ + ut , t = 1, . . . , T (1.1)

where

ut = ρut−1 + εt , t = . . . , 0, 1, 2, . . . (1.2)

|ρ| < 1 , (1.3)

{εt}
T
t=1

is a sequence of i.i.d. disturbances, (1.4)

E (εt) = 0 , V (εt) = σ2 , ∀t . (1.5)

Under these hypotheses,

V (ut) =
σ2

1 − ρ2
, ∀t ,

and, in particular,

V (u1) =
σ2

1 − ρ2
.

2. Transformed model

Model (1.1) can be transformed as follows:

y∗

t = x∗

t β + u∗

t , t = 1, . . . , T (2.1)

where

y∗

t = yt (ρ) =

{ √

1 − ρ2 y1 , t = 1
yt − ρyt−1 , t = 2, . . . , T

x∗

t ≡ xt (ρ) =

{ √

1 − ρ2 x1 , t = 1
xt − ρxt−1 , t = 2, . . . , T

u∗

t =

{ √

1 − ρ2 u1 , t = 1
εt , t = 2, . . . , T

i.e.
{ √

1 − ρ2 y1 =
√

1 − ρ2 x′

1
β +

√

1 − ρ2 u1 ,
yt − ρyt−1 = (xt − ρxt−1)

′ β + εt , t = 2, . . . T .
. (2.2)
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3. Estimation

The method of generalized least squares (with knownρ) leads one to minimize with respect
to β the function:

S1 (ρ, β) = ΣT
t=1

[

yt (ρ) − xt (ρ)′ β
]2

=
(

1 − ρ2
)

(y1 − x′

1
β)

2
+ ΣT

t=2

[

(yt − ρyt−1) − (xt − ρxt−1)
′ β

]2

.

The main problem here comes from the fact thatρ is generally unknown and must be
estimated. We shall distinguish between two groups of methods to estimate this model:

1. approximate generalized least squares

(a) without correction for the first observation,

(b) with correction for the first observation;

2. maximum likelihood (ML).

3.1. Approximate generalized least squares

This method involves two main steps:

1. we estimateρ by an appropriate estimatorρ̂;

2. we estimateβ by minimizingS1 (ρ̂, β) with respect toβ [or by minimizing an ap-
proximation ofS1 (ρ̂, β)].

From there, we can distinguish between types of approaches depending on whether the
first observation is taken to be fixed or random.

3.1.1. Methods where the first observation is taken as given

To avoid the complications entailed by applying a special transformation to the first obser-
vation, we consider the regression:

yt − ρyt−1 = (xt − ρxt−1)
′ β + εt , t = 2, . . . , T . (3.1)

In other words,y1 is taken as given (we condition ony1). Forρ known (or given), we can
estimateβ by applying ordinary least squares (OLS) to (3.1), which is equivalent to solving
the problem:

min
β

S (ρ, β)
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where

S (ρ, β) = ΣT
t=2

[

yt (ρ) − xt (ρ)′ β
]2

= ΣT
t=2

[

(yt − ρyt−1) − (xt − ρxt−1)
′ β

]2

.

Similarly, for β known, we can estimateρ by estimate the equation:

yt − x′

tβ =
(

yt−1 − x′

t−1
β
)

ρ + εt , t = 2, . . . , T , (3.2)

which is equivalent to solving the problem:

min
ρ

S (ρ, β) .

The only remaining problem now consists in estimatingρ. This will be done by solving the
problem:

min
ρ,β

S (ρ, β) .

Several algorithms have been proposed to do this.

3.1.1.1. Hildreth-Lu algorithm .

1. Determine a grid for−1 < ρ < 1, e.g.,

ρ = −0, 95,−0, 90, . . . , 0, 90, 0, 95

or
ρ = −0, 99,−0, 98, . . . , 0, 98, 0, 99 .

2. For eachρ, estimate (3.1) par OLS:

min
β

S (ρ, β) → β̂ = β̂ (ρ) .

3. Choose the value ofρ which minimizesS (ρ, β) .

3.1.1.2. Cochrane-Orcutt algorithm .

1. Choose an initial value forρ : ρ̂
0
. For example, we can estimateβ by OLS on the

equation
yt = x′

tβ + ut
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which yieldsβ̂
0
, and then estimateρ by

ρ̂
0

= ΣT
t=2

ûtût−1/Σ
T
t=1

û2

t

where
ût = yt − x′

tβ̂0
, t = 1, . . . , T .

2. Estimate (3.1) withρ = ρ̂
0
→ β̂

1
.

Estimate (3.2) withβ = β̂
1
→ ρ̂

1
.

Estimate (3.1) withρ = ρ̂
1
→ β̂

2
.

Estimate (3.2) withβ = β̂
2
→ ρ̂

2
.

Etc.

3. We stop whenρ changes by less than a certain percentageδ (the tolerance of the
algorithm),e.g., δ = 0.001.

3.1.1.3. Nonlinear estimation (Gauss-Newton) .The equation (1.1), fort = 2, . . . , T,
can be written:

yt = x′

tβ + ut

= x′

tβ + ρut−1 + εt

= x′

tβ + ρ
(

yt−1 − x′

t−1
β
)

+ εt , t = 2, . . . , T . (3.3)

The estimation of this equation can be viewed as a problem in nonlinear regression. Any
appropriate algorithm (for example, the Gauss-Newton algorithm) can be used to estimate
the model and thusρ.

3.1.1.4. Durbin’s method . This method is based on the following reparametrization
of (3.3) :

yt − ρyt−1 = (xt − ρxt−1)
′ β + εt , t = 2, . . . , T

hence

yt = ρyt−1 + (xt − ρxt−1)
′ β + εt

= ρyt−1 + x′

tβ − x′

t−1
(ρβ) + εt

= ρyt−1 + x′

tβ + x′

t−1
β

1
+ εt , t = 2, . . . , T . (3.4)

If we estimate (3.4) by OLS, the estimated coefficient foryt−1, sayr1, is un estimator ofρ.
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3.1.2. Methods where the first observation is taken into account

After estimatingρ, we estimateβ by settingρ = ρ̂ in (2.1) [or (2.2)], i.e. we minimize
(with respect toβ) the function:

S1 (ρ̂, β) =
(

1 − ρ̂2
)

(y1 − x′

1
β)

2
+ ΣT

t=2

[

(yt − ρ̂yt−1) − (xt − ρ̂xt−1)
′ β

]2

=
(

1 − ρ̂2
)

(y1 − x′

1
β)

2
+ S (ρ̂, β) .

This method is often called the “Prais-Winsten method”. There are as many variants of this
method as there are methods for estimatingρ. In particular, we can estimateρ :

1. by applying any of the methods described in 3.1.1;

2. by minimizingS1 (ρ, β) with respect toρ andβ simultaneously [using a grid or a
nonlinear optimization algorithm].

3.2. Maximum likelihood

If we suppose that theεt are i.i.d.N [0, σ2], the likelihood function ofy1, . . . , yT is

L ≡ L
(

y1, . . . , yT ; β, ρ, σ2
)

=

√

1 − ρ2

(2πσ2)T/2
exp

{

−
S1 (ρ, β)

2σ2

}

(3.5)

and the log-likelihood is

ln L = −
T

2
ln (2π) −

T

2
ln σ2 +

1

2
ln

(

1 − ρ2
)

−
S1 (ρ, β)

2σ2
. (3.6)

The maximum likelihood estimator can be obtained by maximizing ln L with respect to
ρ, β andσ2. If ρ̂ andβ̂ are ML ML estimators ofρ andβ, we see easily that

σ̂2 =
1

T
S1

(

ρ̂, β̂
)

.

If we replaceσ2 by 1

T
S1 (ρ, β), we see that we can obtainρ andβ by minimizing (with

respect toρ and β) the function:

ln (L∗) = −
T

2
ln (2π) −

T

2
ln

[

1

T
S1 (ρ, β)

]

+
1

2
ln

(

1 − ρ2
)

−
T

2
(3.7)

= −
T

2

[

ln (2π) + 1 + ln

(

1

T

)]

−
T

2
ln [S1 (ρ, β)] +

1

2
ln

(

1 − ρ2
)

.
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