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1. Examples of simultaneous equations models

1.1. Simple Keynesian model

Ct = α +βYt +ut (1.1)

Yt = Ct + It (1.2)

whereIt does not depend onut , Yt orCt . One sees easily thatYt andut are not independent,
for

Yt = α +βYt +ut + It .

Consequently, we expect that OLS will not yield consistent estimators ofα andβ . Indeed,
we can expressCt andYt as functions ofIt andut :

Ct =
α

1−β
+

β
1−β

It +
1

1−β
ut , (1.3)

Yt =
α

1−β
+

1
1−β

It +
1

1−β
ut , (1.4)

which shows thatCt andYt are jointly determined, givenIt andut . We call the last two
equations thereduced formof the model.Ct andYt are theendogenous variablesof the
model, whileIt is anexogenous variable.

1.2. Supply and demand model

Consider now the following equations:

qt = a1 +b1pt +c1Yt +ut1 , (demand function) (1.5)

qt = a2 +b2pt +c2Rt +ut2 , (supply function) (1.6)

where

qt = quantity (at timet), pt = price,Yt = income,Rt = rain volume,

ut1 andut2 are random disturbances.

We can solve these equations to expressqt andpt as functions ofYt andRt . On subtracting
(1.5) from (1.6), we get:

a2−a1 +(b2−b1) pt +c2Rt −c1Yt +ut2−ut1 = 0,
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hence
pt =

a1−a2

b2−b1
+

c1

b2−b1
Yt −

c2

b2−b1
Rt +

ut1−ut2

b2−b1
,

qt = a2 +
b2(a1−a2)

b2−b1
+

b2c1

b2−b1
Yt −

b2c2

b2−b1
Rt +

b2

b2−b1
(ut1−ut2)+c2Rt +ut2

=
a1b2−a2b1

b2−b1
+

b2c1

b2−b1
Yt −

b1c2

b2−b1
Rt +

b2ut1−b1ut2

b2−b1

or, in a more compact way,

qt = π1 +π2Yt +π3Rt +vt1 , (1.7)

pt = π4 +π5Yt +π6Rt +vt2 , (1.8)

with

π1 =
a1b2−a2b1

b2−b1
, π2 =

b2c1

b2−b1
, π3 = − b1c2

b2−b1
,

π4 =
a1−a2

b2−b1
, π5 =

c1

b2−b1
, π6 = − c2

b2−b1
,

vt1 =
b2ut1−b1ut2

b2−b1
, vt2 =

ut1−ut2

b2−b1
.

We easily see that

pt andut1 are not independent

pt andut2 are not independent.

OLS applied to (1.5) and (1.6) does not yield consistent estimators of the parameters of the
equations.

2. Notations and hypotheses

The above two models are special cases of simultaneous equations models. The general
form of a linear simultaneous equations model:

ΣG
j=1b jg yt j +ΣK

k=1γkgxtk = ut j , g = 1, . . . ,G, t = 1, . . . ,T , (2.1)

or, in matrix notation,
B′Yt +Γ ′Xt = Ut t = 1, . . . ,T, (2.2)
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where
Yt = (yt1, . . . ,ytG)′ , Xt = (xt1, . . . ,xtK)′ , Ut = (ut1, . . . ,utG)′ , (2.3)

B =
[

bg j
]

g=1,...,G
j=1,...,G

, Γ =
[

γkg

]

g=1,...,G
k=1,...,K

. (2.4)

The g-th columns of the matricesB andΓ contain the coefficients of theg-th equation
(g = 1, ... ,G ). More compactly, we can write:

B′Y′ +Γ ′X′ = U ′ ,

and
YB+XΓ = U , (structural form) (2.5)

where
Y = [Y1, . . . ,YT ]′ ,

Y : T ×G,
X = [X1, . . . ,XT ]′ ,

X : T ×K ,
U = [U1, . . . ,UT ]′ ,

U : T ×G .

To each row ofY, X andU corresponds an observation and to each column corresponds an
equation. We call the equivalent equations (2.1), (2.2) or (2.5) thestructural formof the
model. Concerning random disturbances, we suppose that

E
[

usiut j |Xt
]

= σ i j δ st =

{

σ i j if s= t
0 if s 6= t

(2.6)

or equivalently,
E
[

UsU
′
t |Xt

]

= Σ
= 0

=
[

σ i j
]

, if s= t
, if s 6= t .

(2.7)

Finally, we suppose that
det(B) 6= 0, (2.8)

i.e., the matrixB is invertible. This assumption must be satisfied, in particular, if we sup-
pose that

det(Σ) 6= 0, (2.9)

i.e., if the covariance matrix nonsingular. Indeed, if this were not the case, we could find a
fixed vectora 6= 0 with dimensionG×1 such thatBa= 0, hence

a′B′Yt +a′Γ ′Xt = a′Γ ′Xt = a′Ut

and
a′Σa = V[a′Ut |Xt ] = V[a′Γ ′Xt |Xt ] = 0,
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which means thatΣ is a singular matrix[det(Σ) = 0]. Note further that the invertibility of
B entails that each row and each column ofB must differ from zero, so that there is at least
one endogenous variable in each equation.

If we multiply by B−1, we get

Y = −XΓ B−1 +UB−1 = XΠ +V , (reduced form) (2.10)

where
Π = −Γ B−1 ,

V = UB−1 = [V1, . . . ,VT ]′ = [U1, . . . ,UT ]′B−1 ,

V ′
t = U ′

t B
−1 ,Vt = (B−1)′Ut ,

E
[

VsV
′
t

]

=
(

B−1)′Σ
(

B−1) , if s= t

= 0 , if s 6= t .

Equation (2.10) is called thereduced formof the model.

3. The identification problem

3.1. Special cases

Let us go back to the model of supply and demand in section 1. Onusing the reduced form

qt = π1 +π2Yt +π3Rt +vt1 ,

pt = π4 +π5Yt +π6Rt +vt2 ,

we can estimateπ1, . . . ,π6 by OLS, forYt andRt are independent ofvt1 andvt2. Further,
we can expressa1,b1,c1,a2,b2,c2 as functions ofπ1, . . . ,π6:

b1 =
π3

π6
, b2 =

π2

π5
, c2 = −π6(b2−b1) ,

c1 = π5(b2−b1) , a1 = π1−b1π6 , a2 = π1−b2π4 .

On replacingπ1 by π̂1, etc., we can obtain estimates of the structural parametersa1,b1, . . .
(indirect least squares method).

Consider now the model:

qt = a1 +b1pt +c1Yt +ut1 , (demand function) (3.1)

qt = a2 +b2pt +ut2 , (supply function). (3.2)
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The reduced form is then

qt = π1 +π2Yt +vt1 ,

pt = π4 +π5Yt +vt2 ,

where

π1 =
a1b2−a2b1

b2−b1
, π2 =

c1b2

b2−b1
, π4 =

a1−a2

b2−b1
, π5 =

c1

b2−b1
,

vt1 =
b2ut1−b1ut2

b2−b1
, vt2 =

ut1−ut2

b2−b1
,

hence the equations

b2 =
π2

π5
, a2 = π1−b2π4

from which we can estimateb2 anda2. In this case, there is no unique solution fora1,b1

and c1. Only the supply function can be estimated. We then say that the demand function
is not identified (or isunderidentified). If we wish to get a unique solution, we must add
constraints.

Similarly, if we consider the equations

qt = a1 +b1pt +c1Yt +d1Rt +ut1 , (demand function)

qt = a2 +b2pt +ut2 , (supply function)

the reduced form becomes:

qt = π1 +π2Yt +π3Rt +vt1 ,

pt = π4 +π5Yt +π6Rt +vt2 ,

where

π1 =
a1b2−a2b1

b2−b1
, π2 =

c1b2

b2−b1
, π3 =

d1b2

b2−b1
, vt1 =

b2(ut1−ut2)

b2−b1

π4 =
a1−a2

b2−b1
, π5 =

c1

b2−b1
, π6 =

d1

b2−b1
, vt2 =

ut1−ut2

b2−b1
.

Here, we can computeb2 in two different ways:

b2 =
π2

π5
, b2 =

π3

π6
.
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Consequently, we also have:

π2

π5
=

π3

π6
,

a2 = π1−b2π4 = π1−
(

π2

π5

)

π4 = π1−
(

π3

π6

)

π5 .

We then say that the equation isoveridentified. The overidentification of the equation
entails restrictions on the parameters of the reduced form.Further, we can easily verify
that the demand equation is not identified.

Another way of studying the identification problem consistsin examining linear com-
binations of the equations. Consider again:

qt = a1 +b1pt +c1Yt +ut1 , (3.3)

qt = a2 +b2pt +ut2 . (3.4)

Take a linear combination of the two previous equations:

qt = w(a1 +b1pt +c1Yt +ut1)+(1−w)(a2 +b2pt +ut2)

= [wa1 +(1−w)a2]+ [wb1 +(1−w)b2] pt

+wc1Yt +[wut1 +(1−w)ut2]

= a∗1 +b∗1pt +c∗1Y1 +u∗t1 . (3.5)

Equation (3.5) cannot be distinguished from (3.3).

3.2. Identification conditions for equations with omitted variables

Let us now study the general equation system:

B′Yt +Γ ′Xt = Ut , t = 1, . . . ,T .

Let β ′ the first row ofB, γ ′ the first row ofΓ , andut1 the first element ofUt . The first
equation of the system can be written:

β ′Yt + γ ′Xt = ut1 , (3.6)

whereβ 6= 0 (by the invertibility ofB ), Ut = (ut1,U ′
t2)

′ andUt2 is a vector with dimension
(G−1)×1. We will now study the case where there areG1 endogenous variables andK1

exogenous variables in this equation.
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To do this, we consider the following partitions of the variable and parameter vectors:

Yt =
(

Y′
t1,Y

′
t2

)′
, Xt =

(

X′
t1,X

′
t2

)′
,

β =

(

β 1

β 2

)

, γ =

(

γ1

γ2

)

where

β 1 : coefficients of theG1 endogenous variables (in the equation),

β 2 : coefficients of theG2 excluded endogenous variables,

γ1 : coefficients of theK1 included exogenous variables,

γ2 : coefficients of theK2 excluded exogenous variables,

G = G1 +G2 ,K = K1 +K2 .

Further, ifB andΓ are partitioned conformably withβ andγ, i.e.,

B =

[

β 1 B1

β 2 B2

]

, Γ =

[

γ1 Γ1

γ2 Γ2

]

, Bi : Gi × (G−1) ,Γi : Gi × (G−1) , i = 1,2,

we see that the system (3.6) can be rewritten:

β ′
1Yt1 +β ′

2Yt2 + γ ′1Xt1 + γ ′2Xt2 = ut1 , t = 1, ... ,T, (3.7)

B′
1Yt1 +B′

2Yt2 +Γ ′
1Xt1 +Γ ′

2Xt2 = Ut2 , t = 1, ... ,T. (3.8)

We suppose thatβ 2 = 0 andγ2 = 0, so that equation (3.7) has the form

β ′
1Yt1 + γ ′1Xt1 = ut1 , t = 1, ... ,T. (3.9)

The parameters of the reduced form are linked to the structural parameters by the for-
mula:

Π = −Γ B−1

or
ΠB = −Γ . (3.10)

Sinceβ andγ are the first columns ofB andΓ respectively, we can write:

Π
(

β 1
β 2

)

= −
(

γ1
γ2

)

,
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hence

Π
(

β 1
0

)

= −
(

γ1
0

)

.

If we partitionΠ conformably withβ ,

Π =

(

Π11 Π12

Π21 Π22

)

, Πi j : Ki ×G j , i, j = 1,2,

we must have:
(

Π11 Π12

Π21 Π22

)(

β 1
0

)

= −
(

γ1
0

)

or, equivalently,

Π11β 1 = −γ1 , (3.11)

Π21β 1 = 0 . (3.12)

For the first row of the equation to be identified, we must be able to solve in a unique
way the first two equations forβ 1 andγ1. Equation (3.11) only allows one to getγ1 from
β 1 andΠ11. Consequently, equation (3.12) determinesβ 1. Sinceβ 1 6= 0 and the equation
(3.12) is homogeneous, we must have:

0≤ rank(Π21) ≤ G1−1.

If we had rank(Π21) = G1, β 1 = 0 would be the only solution. The set of the solutions
of the equationΠ21β 1 = 0 is a vector subspace ofR

G1 whose dimension is equal toG1−
rank(Π21). This set corresponds to a unique vector up to a multiplicative constant if and
only if the solution space has dimension 1,i.e., if rank(Π21) = G1− 1. We thus get the
following condition which is necessary and sufficient forβ 1 to be uniquely determined up
to a multiplicative constant:

rank(Π21) = G1−1 (rank condition for identification). (3.13)

For this condition ton be satisfied, it is also necessary (butnot sufficient) that

K2 ≥ G1−1
⇔ G2 +K2 ≥ G2 +G1−1
⇔ G2 +K2 ≥ G−1 (order condition for identification).

(3.14)

In other words, the number of excluded exogenous variables in the equation must be at
least equal to the number of included endogenous variables less one, or the total number
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of excluded variables must be at least equal to the total number of endogenous variables in
the system less one. IfK2 + G2 = G−1, we say that the equation isexactly identified. If
K2 +G2 > G−1, we say it isoveridentified.

Finding the rank ofΠ12 is however difficult. Consider

B =

[

β 1 B1

0 B2

]

, Γ =

[

γ1 Γ1

0 Γ2

]

,

as well as the(G2+K2)×G matrix of structural coefficients on the endogenous and exoge-
nous excluded from the first equation but appearing in the other equations of the model:

D =

[

0 Γ2

0 B2

]

.

By equation (3.10), we see easily that
[

Π11 Π12

Π21 Π22

][

β 1 B1

0 B2

]

= −
[

γ1 Γ1

0 Γ2

]

hence
Π21β 1 = 0,

Π21B1 +Π22B2 = −Γ2

and

D =

[

0 Γ2

0 B2

]

=

[

−Π21 −Π22

0 IG2

][

β 1 B1

0 B2

]

=

[

−Π21 −Π22

0 IG2

]

B.

Since matrixB is nonsingular, we can conclude that

rank(D) = rank

([

−Π21 −Π22

0 IG2

])

= rank(Π21)+G2

and
rank(Π21) = G1−1⇔ rank(D) = G1−1+G2 = G−1.

By the rank condition (3.13), equation (3.6) is thus exactly identified if and only if

rank(D) = G−1 (structural rank condition). (3.15)
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3.3. Identification conditions based on general linear constraints

The rank condition
rank(Π21) = G1−1

can be generalized to general linear restrictions of the form as follows. We have

Π ′β + γ = 0 (3.16)

or
[

Π ′ , IK
]

(

β
γ

)

= Π
(

β
γ

)

= 0 (3.17)

whereΠ = [Π ′ , IK] is aK × (G+ K) matrix. In general, equation (3.17) does not have a
unique solution (even to a multiplicative factor). To have aunique solution, we must add
r1 constraints

Φ1

(

β
γ

)

= c1 , (3.18)

whereΦ1 is a r1× (G+ K) matrix andc1 is a r1×1 vector. On consolidating (3.17) and
(3.18), we get the system:

[

Π
Φ1

](

β
γ

)

=

(

0
c1

)

. (3.19)

This system has a unique solution for(β ′,γ ′)′ if and only if

rank

([

Π
Φ1

])

= G+K (generalized rank condition).

This condition entails, in particular, that

r1 ≥ G1 , (generalized order condition)

i.e., the number of constraints must be at least equal to the number of endogenous variables
in the system.

In this context, we can also formulate a rank condition similar to (3.15) which is ex-
pressed in terms of the matricesB andΓ . The equation

B′Yt +Γ ′Xt = Ut

can be written:
AZt = Ut ,
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with

A =
[

B′,Γ ′] ,Zt =

[

Yt

Zt

]

.

Let α ′
1 be the first row ofA (parameters of the first equation). The restrictions on the first

equation may then be written
α ′

1φ = 0

or
(

ℓ′1A
)

φ = 0,

whereα ′
1 = ℓ′1A andℓ1 = (1, 0, . . . , 0)′. If we multiply AZt = Ut by a nonsingular matrix,

the first equation satisfies the same restrictions: the transformed system

FAZt = FUt ,

must satisfy

F ′
1Aφ = 0, F1 = c











1
0
...
0











.

A necessary and sufficient condition for this to hold is:

rank(Aφ) = G−1 .

4. Estimation: limited information methods

For the estimation of simultaneous equations, one typically distinguishes between two
types of methods:

1. limited-information methods: the parameters of a singleequation are estimated,
without taking into account the information contained in the other equations;

2. full-information methods: the parameters of all the equations are estimated jointly,
taking into account restrictions entailed by different equations.

There are several limited-information methods. The simplest and most widely used is
two-stage least squares (2SLS). Let the equation

y = Y1β +X1γ +u

= Z1δ +u (4.1)
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where

y : T ×1 observation vector on the endogenous dependent variable,

Y1 : T ×G1 matrix of observations on the other endogenous variables,

X1 : T ×K1 matrix of observations on included exogenous variables,

X = [X1, X2] : T ×K matrix of observations on all the exogenous variables,

β andδ are parameters vectors to estimate,

u : T ×1 vector of random disturbances,

Z1 = [Y1, X1] ,δ =

(

β
δ

)

,

E
(

uu′
)

= σ2IT ,

G1 = G1 +1 = number of exogenous in the equation,

G = G1 +G2 = total number of endogenous variables,

K = K1 +K2 = total number of endogenous variables.

We suppose that the equation (4.1) is identified, which entails that

G2 +K2 ≥ G−1 (order condition for identification).

Let us multiply (4.1) byX
′
:

X
′
y = X′Z1δ +X′u

= X′Z1δ +v (4.2)

where
E
[

vv′
]

= σ2X′X .

If we apply GLS to the transformed equation (4.2), we obtain:

δ̂ 2S =
[

(

Z′
1X
)(

X′X
)−1

X
′
Z1

]−1(
Z′

1X
)(

X′X
)−1

X
′
y

which is called the two-stage least squares (2SLS). If we consider the reduced form forY1,
we get an expression of the form:

Y1 = XΠ1 +V1 ,
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hence
E(Y1) = XΠ1 .

Consequently,

y = Y1β +X1γ +u

= [E(Y1)+V1]β +X1γ +u

= E(Y1)β +X1γ +(u+V1β )

= E(Y1)β +X1γ +u∗

where
u∗ = u+V1β .

If we knewE(Y1),we could estimateβ andγ by OLS. We can estimateE(Y1) by

Ŷ1 = XΠ̂1 = X
(

X
′
X
)−1

X
′
Y1 .

If we write
V̂1 = Y1−Ŷ1 = MXY1 ,M1 = I −X

(

X′X
)−1

X1 ,

then

y =
(

Ŷ1 +V̂1
)

β +X1γ +u

= Ŷ1β +X1γ +u∗∗

= Ẑ1δ +u∗∗ , (4.3)

where
u∗∗ = u+V̂1β , Ẑ1 =

(

Ŷ1,X1
)

.

We can then apply OLS to equation (4.3):

δ̂ IV =
(

Ẑ′
1Ẑ1
)−1

Ẑ′
1y

hence the name “two-stage least squares”.
We thus have apparently two estimators:

δ̂ 2S =
[

(

Z′
1X
)(

X′X
)−1(

X′Z1
)

]−1(
Z′

1X
)(

X′X
)−1

X′y,

δ̂ IV =
(

Ẑ′
1Ẑ1
)−1

Ẑ′
1y .
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We will now show that̂δ 2S = δ̂ IV :

δ̂ IV =

[(

Ŷ′
1

X′
1

)

(

Ŷ1,X1
)

]−1(
Ŷ′

1
X′

1

)

y,

=

[

Ŷ′
1Ŷ1 Ŷ′

1X1

X′
1Ŷ1 X′

1X1

]−1(
Ŷ′

1y
X′

1y

)

,

where

Z′
1X
(

X′X
)−1

X′ =

[

Ŷ′
1

X′
1

]

X
(

X′X
)−1

X′

=

[

Y′
1X (X′X)−1X′

X′
1X (X′X)−1X′

]

=

(

Ŷ′
1

X′
1

)

= Ẑ′
1 ,

for
X = (X1 , X2) ,

X′X
(

X′X
)−1

X′ = X′ =

(

X′
1

X′
2

)

X
(

X′X
)−1

X′ ,

=

(

X′
1X (X′X)−1X′

X′
2X (X′X)−1X′

)

=

(

X′
1

X′
2

)

,

and

Z′
1X
(

X′X
)−1

X′Z1 = Z′
1X
(

X′X
)−1

X′X
(

X′X
)−1

X′Z1

=

(

Ŷ′
1

X′
1

)

[Y1,Z1] = Ẑ′
1Ẑ1 .

Thus
δ̂ 2S =

(

Ẑ′
1Ẑ1
)−1

Ẑ′
1y = δ̂ 1V .

Suppose

plim
T→∞

X′X
T

= Qx , det(Qx) > 0,

plim
Z′

1X
T

= Q1 , rank(Q1) = G1 +K1 ,

plim
X′u
T

= 0 .
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Then

δ̂ 2S =
[

(

Z′
1X1
)(

X′X
)−1(

X′Z1
)

]−1(
Z′

1X
)(

X′X
)−1

X′ (Z1δ +u)

= δ +
[

(

Z′
1X
)(

X′X
)−1(

Y′Z1
)

]−1(
Z′

1X
)(

X′X
)−1

X′u

plim
(

δ̂ 2S−δ
)

= plim

[

(

Z′
1X
T

)(

X′X
T

)−1(Y′Z1

T

)

]−1(
Z′

1X
T

)(

X′X
T

)−1 X′u
T

= 0 ,

i.e., δ̂ 2S is a consistent estimator ofδ . To estimateσ2, we use

σ̂2
2S =

(

y−Y1β̂ −X1γ̂
)′(

y−Y1β̂ −X1γ̂
)

/(T −G1−k1) .

Under the same conditions, we can show that

√
T
(

δ̂ 2S−δ
)

→ N
[

0,σ2Q2S
]

where

Q2S = plim

[

(

Z′
1X
T

)(

X′X
T

)−1(Y′Z1

T

)

]−1

= σ2

[

(

plim
Z′

1X
T

)(

plim
X′X
T

)−1(

plim
X′Z1

T

)−1
]

.

We can estimateQ2S by

σ̂2
2S

[

(

Z′
1X
T

)(

Y′X
T

)−1(Y′Z1

T

)

]−1

= σ̂2
2S

[

1
T

Ẑ′
1Ẑ1

]−1

.

5. Estimation: full-information methods

Full-information methods use information contained in allthe equations. The simplest of
these is three-stage least squares. We considerG structural equations:

yi = Yiβ i +Xiγ i +ui , i = 1, . . . ,G,
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whereXi : T ×Ki, Yi : T ×Gi, andG−Gi +K +Ki ≥ G−1. Write

yi = Ziδ i +ui , i = 1, . . . ,G,

where

Zi = [Yi,Xi] ,δ i =

[

β i
γ i

]

,

E
[

uiu
′
j

]

= σ i j IT .

Then
X′yi = X′Ziδ i +X′ui , i = 1, . . . ,G,











X′y1

X′y2
...

X′yG











=











X′Z1 0 . . . 0
0 X′Z2 . . . 0
...

...
...

0 0 . . . X′ZG





















δ 1

δ 2
...

δ G











+











u1

u2
...

uG











,

and
(

I ⊗X′)y =
(

I ⊗X′)Zδ +
(

I ⊗X′)u

where

y =







y1
...

yG






, Z =











Z1 0 . . . 0
0 Z2 . . . 0
...

...
...

0 0 . . . ZG











, u =







u1
...

uG






,

V
[(

I ⊗X′)u
]

= Σ ⊗
(

X′X
)

,Σ =
[

σ i j
]

i, j=1,...,G .

If we knewΣ , we could use the GLS-type estimator:

δ̂ 3S =
(

Z′
[

Σ−1⊗X
(

X′X
)−1

X′
]

Z
)−1

Z′
[

Σ−1⊗X
(

X′X
)−1

X′
]

y .

SinceΣ is unknown, we can estimate it from 2SLS residuals:

Σ̂ =
[

σ̂ i j
]

, σ̂ i j = û′ii û j j /T , ûi = yi −Zi δ̂ i2S, i , j = 1, . . . ,G,

which yields the estimator

δ̂ 3S =
(

Z′
[

Σ̂−1⊗X
(

X′X
)−1

X′
]

Z
)−1

Z′
[

Σ̂−1⊗X
(

X′X
)−1

X′
]

y .
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Under general conditions, we can show that

√
T
(

δ̂ 3S−δ
)

→ N [0,Σ3S] ,

Σ3S = plim

[

1
T

Z′
(

Σ−1⊗X
(

X′X
)−1

X′
)

Z

]−1

.
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6. Sources and chronological list of references

1. Maddala (1977)

2. Chow (1983)

3. Hausman (1983)

4. Hsiao (1983)
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