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1. Examples of simultaneous equations models

1.1. Simple Keynesian model

C = a+BY+u (1.1)
Y = Citl (1.2)

wherel; does not depend aR, Y; orC;. One sees easily th¥tandu; are notindependent,
for

Yi=a+BYi+u+li.
Consequently, we expect that OLS will not yield consistetibegtors ofa andf. Indeed,
we can expresS; andY; as functions of; andu :

@ Pt

1_B 1_Bt l—BUt’
a + ! It + ! Ut
1-B 1-p° 1-p7

c — (1.3)

Y% = (1.4)

which shows thaC; andY; are jointly determined, gively andu;. We call the last two
equations theeduced formof the model.C; andY; are theendogenous variablesf the
model, whilel; is anexogenous variable

1.2. Supply and demand model

Consider now the following equations:

G = ai+bipt+c1Y;+ W1, (demand function) (1.5)
G = ax+bop+ R+ U2, (supply function) (1.6)

where
Ot = quantity (at time), pr = price,Y; = income,R; = rain volume,

U1 andu are random disturbances

We can solve these equations to expigsnd p; as functions of; andR;. On subtracting
(1.5) from (1.6), we get:

ag—ag+ (bp—b1) pt +CoR —C1Yt + Uo — 1 =0,



hence

a—a C1 C2 U1 — U2
— Y, —
P Ty b by—by & bp—by
ba(ag—ap)  bpcy baco b,
_ Y — _
Ok ot T T, b bz_blRt+b2_bl(L1tl U2) + C2R + Ur2
ajby —apbh;  bcy bico Potk1 — by
— Y —
b—b Dbt bpby & by
or, in a more compact way,
G = T+ 7Y+ iR+ Wy, (1.7)
Pt = T4+ T + TR + V2, (1.8)
with b b b b
a1 —aghy DG _ e
m= bz_bl 5 T[?__bz_bl, 3 = bz—b]_,
& G _ &
n4_b2—b1’ 7T5—b2_b17 o= by —by’
_ baur —brez U — U
Vip=— 2

b2—b1 » V2= bz—bl .
We easily see that

p: andu; are not independent
p; andu, are not independent.

OLS applied to (1.5) and (1.6) does not yield consistenirestirs of the parameters of the
equations.

2. Notations and hypotheses

The above two models are special cases of simultaneousi@wuatodels. The general
form of a linear simultaneous equations model:

53 1bightj + Zha VigXk =Uj,9=1,....G, t=1,....T, (2.1)

or, in matrix notation,
BY,+I"%=U t=1,....T, (2.2)



where

Yt:<y'[la"'7th)/7)q:(xtlw-'aXtK),a Ut:(utla"'7utG)/7 (23)
B= [byjlg=1..6, = [ng} 9=1..G - (2.4)
I=1,...G =1,...,K

The g-th columns of the matriceB and ™ contain the coefficients of thg-th equation
(=1, ...,G). More compactly, we can write:

BY +r'X' =U’,

and
Y B+ XI' =U, (structural form) (2.5)

where
Y= [Y,....Y7]", X= [Xg,....%]", U= [Uyg,...,Ur],
Y:TxG, X:TxK, U:TxG.

To each row ofY, X andU corresponds an observation and to each column correspands a
equation. We call the equivalent equations (2.1), (2.22d)(thestructural formof the
model. Concerning random disturbances, we suppose that

ogjj If s=t
E [Usitkj | %] =Uij5st={ (')J it st (2.6)
or equivalently,
E[UV{|X%] =2 =[ojj] , if s=t (2.7)
=0 , If s#t.
Finally, we suppose that
detB) # 0, (2.8)

i.e,, the matrixB is invertible. This assumption must be satisfied, in paldicuf we sup-
pose that
det>) #£0, (2.9)

i.e.,if the covariance matrix nonsingular. Indeed, if this weot the case, we could find a
fixed vectora # 0 with dimensiorG x 1 such thaBa= 0, hence

aBY,+ar'x =ar’x =auy

and
adZa=V[@U|X]=V[ar'%|%] =0,



which means thak is a singular matrixdet >) = 0]. Note further that the invertibility of
B entails that each row and each columrBahust differ from zero, so that there is at least
one endogenous variable in each equation.

If we multiply by B~1, we get

Y = —XrB1+UB1=X/+V, (reduced form) (2.10)

where
Mn=-re,

V=UB1=M,....\f] =[Uy,...,Ur]'B L,
\/t/ — Ut/B_ly\/t — (B—l)/Ut ;

EV] = (BY) =(BY), if s=t
=0 , If s#t.

Equation (2.10) is called theduced fornof the model.

3. The identification problem

3.1. Special cases

Let us go back to the model of supply and demand in section usihg the reduced form

G = m+TY+mR+W,
pp = T+ 7Y+ MR +Vi2,

we can estimater, ..., 11g by OLS, forY; andR; are independent ok1 andv;,. Further,
we can expresa, b1, ¢y, ap, by, co as functions of, . . ., 1:

T3 T
by, = —, bh=— c=—-m(bh->Db
1 e 2T @ 6 (o —Dby),
Ct = Ts(bp—b1), apy=m—bims, ax=m—bomy.

On replacingm, by 7ri, etc., we can obtain estimates of the structural parameiébs, . . .
(indirect least squares method).
Consider now the model:

G = a+bipt+ciYi+u1, (demand function) (3.1
G = ax+hbopi+u2, (supply function). (3.2)



The reduced form is then

o T+ TOY: + Vi1,
pp = T+ 1Y+,
where
a by, — aobg (o]0 a;—ay C1
m=———— T = Ty = T[:—’
Y b 7 2 bbb Y bbbyl ° by—Dby
_ by — by _ Ua—Up
W=—7T"7T"

Vio =
hence the equations
v
by=—, ax=m—-bymy
I3

from which we can estimate, anday. In this case, there is no unique solution &t b
and c;. Only the supply function can be estimated. We then say tleatiémand function
is not identified (or isunderidentifiedl If we wish to get a unique solution, we must add
constraints.

Similarly, if we consider the equations

G = at+bip+ci+diR+w1, (demand function)
G = ax+bopi+uwz, (supplyfunction)

the reduced form becomes:

G = ™+ + mR+Ww,
P = T+ 1Y+ MR + Vi,

where
_ agbp—aghy _ Cbp _ Oibp ~ bp(w —w2)
m= bp—b; 7T2—b2_b1, 7T3—b2_b17 Vi1 = by — by
A& a .t U —Up
T[4_b2_b17 7T5_b2_b17 n6_b2_b17 Vi2 = b2—b1 .

Here, we can computa in two different ways:

m 3
bo=—, bp=—.
5 T



Consequently, we also have:

i 713

Tt T’
Tt TT:

Ay = 7T1—b27T4=7T1— =2 =T — =3 Ty .
T5 Tte

We then say that the equation eseridentified The overidentification of the equation
entails restrictions on the parameters of the reduced fdfarther, we can easily verify
that the demand equation is not identified.

Another way of studying the identification problem consistexamining linear com-
binations of the equations. Consider again:

G = ar+bip+ciYt+u, (3.3)
G = ax+bop+ue. (3.4)

Take a linear combination of the two previous equations:

G = w(ag+bipt+C1¥i+ )+ (1—w) (a2 + bzt + Ut2)
= [way+ (1—w)ap]+ [wby + (1 —w)bo] p
+WeC1 Yt + Wk + (1 —w) U]
= a+bip+cii+uy . (3.5)

Equation (3.5) cannot be distinguished from (3.3).

3.2. ldentification conditions for equations with omitted variables
Let us now study the general equation system:
BY,+I"% =U;, t=1,...,T.

Let B’ the first row ofB, y the first row of/", andu the first element ob). The first
eqguation of the system can be written:

BYi+ Y% =, (3.6)

wheref3 # 0 (by the invertibility ofB ), Uy = (ut1,U/,)" andUy; is a vector with dimension
(G—1) x 1. We will now study the case where there &@eendogenous variables akd
exogenous variables in this equation.



To do this, we consider the following partitions of the vate@aand parameter vectors:

Y= (YY) s %= (X1X)

2= () = (1)

where
B, : coefficients of th&5; endogenous variables (in the equation),
B, : coefficients of thes, excluded endogenous variables,
y; : coefficients of th&{; included exogenous variables,
Yo . coefficients of they excluded exogenous variables,

G = G1+Gp,K=Kq+Kp.

Further, ifB andl™ are partitioned conformably wit@ andy;, i.e.,

B:{g; gz], FZ[Q II:;};BiZGiX(G—l)’I'i;C-‘,ix((;_]_)’i:l,z7

we see that the system (3.6) can be rewritten:
BiYi1+ BoYio+ ViXa + VoXe =W, t =1, ..., T, (3.7)
BiYi + BoYio+ X+ %2 =Upp , t =1, ..., T. (3.8)
We suppose thg#, = 0 andy, = 0, so that equation (3.7) has the form
BV +yiXa =1, t=1,..,T. (3.9)

The parameters of the reduced form are linked to the stralgb@rameters by the for-
mula:
n=-rgt

or
MnB=—r. (3.10)

Sincef andy are the first columns d8 andl” respectively, we can write:

m(B)--(%)



hence

0(8)-(5)

If we partition T conformably withf3,

My Mo .
= , i :KixGj L1, ]=1,2,
( 21 nzz) iR

we must have:

M1 M2 Bi\_ (n
My, Tlyo 0 o 0
or, equivalently,
MmaB, = —vi, (3.11)
MaB; = 0. (3.12)

For the first row of the equation to be identified, we must be &blsolve in a unique
way the first two equations fg8,; andy;. Equation (3.11) only allows one to ggt from
B, andlly1. Consequently, equation (3.12) determifigs Sincef3; # 0 and the equation
(3.12) is homogeneous, we must have:

0<rank(ly) <G;—1.

If we had ranklT,1) = G1, B; = 0 would be the only solution. The set of the solutions
of the equation,13; = 0 is a vector subspace &® whose dimension is equal ®; —
rank(l121). This set corresponds to a unique vector up to a multiplieationstant if and
only if the solution space has dimensioniZ,, if rank(l121) = Gy — 1. We thus get the
following condition which is necessary and sufficient frto be uniquely determined up
to a multiplicative constant:

rank(l1) = G1—1 (rank condition for identification). (3.13)
For this condition ton be satisfied, it is also necessaryrfbtsufficient) that

Ko>G;—1
&S G+Ke>Gr+G -1 (3.14)
< Gy+Ky>G-—1 (order condition for identification).

In other words, the number of excluded exogenous variablésa equation must be at
least equal to the number of included endogenous variab$éssdne, or the total number



of excluded variables must be at least equal to the total eumitendogenous variables in
the system less one. K, + G, = G — 1, we say that the equation exactly identified If
Ko+ Gy > G—1, we say it isoveridentified

Finding the rank of 112 is however difficult. Consider

_ | B B: Iy n
B_[o B 7|0 Rl

as well as th¢G, + K3) x G matrix of structural coefficients on the endogenous andexog
nous excluded from the first equation but appearing in therahuations of the model:

10 Iz
o-[0 5]

By equation (3.10), we see easily that

BRIt

M1 My 0 By 0 I
hence
18, =0,
[121B1+4M22Bp = -1
and

D— O 2| _ | —MMar =Mz || By Br | _ | =[x —IT22 B
0 B 0 g, 0 B 0 G, '

Since matrixB is nonsingular, we can conclude that

—[a1 —T2

rank(D):rankq 0 6, D:rank(l'lm)-i—Gz

and
rank(l;1) =Gy — 1< rankD) =G -1+ G, =G - 1.

By the rank condition (3.13), equation (3.6) is thus exaatbniified if and only if

rank(D) = G — 1 (structural rank condition) (3.15)



3.3. Identification conditions based on general linear constraints

The rank condition
ranl<(l‘121) =G;1—1

can be generalized to general linear restrictions of tha fas follows. We have

np+y=0 (3.16)

[n',m](ﬁ):ﬁ(ﬁ):o (3.17)

wherelT = [T’ 1] is aK x (G +K) matrix. In general, equation (3.17) does not have a
unique solution (even to a multiplicative factor). To haverague solution, we must add

r1 constraints
CD]_( B ) =0C, (3.18)

or

y
where®; is ary x (G+ K) matrix andc; is ary x 1 vector. On consolidating (3.17) and

(3.18), we get the system: -
r B\ (O
ol (3)-(2) 419

This system has a unique solution f@, y)’ if and only if
n . .
rank({ ® D = G+ K (generalized rank condition).
1

This condition entails, in particular, that
ri > G1, (generalized order condition)

i.e, the number of constraints must be at least equal to the nuofileedogenous variables
in the system.

In this context, we can also formulate a rank condition samib (3.15) which is ex-
pressed in terms of the matricBand/ . The equation

BY: -+ "% = U

can be written:
AZ = U,

10



with

A:{B@Fﬂ,a::{z}.

Let o be the first row ofA (parameters of the first equation). The restrictions on tisé fi
equation may then be written

ajp=0
or
(1A) 9 =0,
wherea’ = ¢/Aand/1 = (1, O, ..., 0)’. If we multiply AZ = U; by a nonsingular matrix,

the first equation satisfies the same restrictions: theftvaned system

FAZ = FUy,
must satisfy
1
FIAp=0, Fi=c 0
0

A necessary and sufficient condition for this to hold is:

rankAg) =G—-1.

4. Estimation: limited information methods

For the estimation of simultaneous equations, one typiadibtinguishes between two
types of methods:

1. limited-information methods: the parameters of a sirg@ation are estimated,
without taking into account the information contained ia tther equations;

2. full-information methods: the parameters of all the emus are estimated jointly,
taking into account restrictions entailed by different &iipns.

There are several limited-information methods. The sistp@d most widely used is
two-stage least squares (2SLS). Let the equation

y = YiB+Xy+u
Z15+u (4.1)

11



y . T x 1 observation vector on the endogenous dependent variable,
Y: : T x Gy matrix of observations on the other endogenous variables,
X1 : T xKzg matrix of observations on included exogenous variables,
X = [Xg, Xg]: T x K matrix of observations on all the exogenous variables,

B andd are parameters vectors to estimate,

u: T x 1 vector of random disturbances,

Z1=Y1, X, 0= (B> :

o)
E(uu) = a?lT,
G1 = Gi1+ 1= number of exogenous in the equation,
G = G;+ G, =total number of endogenous variables,
K = Kji+ Ky =total number of endogenous variables.

We suppose that the equation (4.1) is identified, which kntiaat
Go+Ky;>G—1 (order condition for identification).

Let us multiply (4.1) byX " :

Xy = X'z16+Xu
X'Z18 4V (4.2)

where
E [wW] =0oX'X.

If we apply GLS to the transformed equation (4.2), we obtain:

825 = | (ZiX) (XX) *X'71] Zx) (%) Xy

which is called the two-stage least squares (2SLS). If waiden the reduced form fofy,
we get an expression of the form:

Y1 = Xl + V1,

12



hence
E(Y1) =Xy .

Consequently,

y = YiB+Xiy+u
[E(Y1) +V4] B+ X1y+u
E(Y1) B+ Xiy+ (u+ViP)
= EM)B+Xpy+Uu

where
u'=u+Vip.

If we knewE (Y1),we could estimat@ andy by OLS. We can estimate(Y;) by

Y1 = XA; = X (x’x) Xy

If we write A A
Vi =Y1— Y1 = MxYp, Mg =1 =X (X'X) XL,
then
y = (?14—\71) B+Xi1y+u
= VB +Xay+u*
718+ u**, (4.3)
where

u = U+\71[3, 2]_ = (?1,)(1) .
We can then apply OLS to equation (4.3):

8|V = (2/121)_12/1y

hence the name “two-stage least squares”.
We thus have apparently two estimators:

~ -1
b5 = [(20 00 (xz)] T (@3x) () Xy,
dv = (Zz) zy.

13



We will now show thaﬁzs = 3|v :

~ A R -1 Y
v = ()| (%)
1 1

where
/ A 2V ?:{ / 1y,
ZIX (XX) X = | X (X)X
1
X)X | ( A ) _>5
XIX (X'X) X! X{
for
X:<X17X2)7
/ I~ 17 ! X;{_ v~ 17
XXOX) X = X = (50 )X (%)X,
XX (X)X _(x{)
L XX (XXX ] X )
and
ZIX (X'X)TX'Ze = ZiX (X'X) TEXX (XX Xz
Y/ 5
= ( Xl’ )[Yl,Zl] :Z'121.
1
Thus A s A
525 = (ZiZ]_) Ziyz 51V .
Suppose
/
plim = Qx,defQy) >0,
T—o T
. 1 X _
plim .1|. = Qq, rank Q1) =Gy +Kg,
X'u
im>— = 0.
plim T 0

14



Then

-1

825 = [(zgxl) (xX'x)~* (x’zl)] - (Z3X) (X'X) "X (216 +u)

=5+ (Zx) (XX) 7 (V'2) Zx) (%) X

plim (325— 5)

o))" O] )02 %
—0,

i.e., 325 is a consistent estimator 8 To estimates?, we use
~ / ~
6%s= (y-VaB—Xap) (y-YiB—ay)/(T-Gi—ka) .
Under the same conditions, we can show that

ﬁ (825— 5) — N [O, O'Zst}

s - (3 () (f)
- o (i 5 (i) (a2 ]

We can estimat@,s by

-1
52| (X)) (YX AL 52 [L55 -1
ST T T O|TAMA]

5. Estimation: full-information methods

where

Full-information methods use information contained inta# equations. The simplest of
these is three-stage least squares. We conGd#ructural equations:

yl:YiBi+)(i)/i+ui7 i:17"'7G7

15



whereX; : T xK;,Y;: T x Gj, andG— G; + K+ K; > G— 1. Write

Yi=Zoi+Uu, i=1...,G,
where
B-}
Z =Y, %],0i = o,
= X5, [yi
E [uiuﬂ = oijlt
Then
Xy =X'z6+X'u, i=1,...,G,

X’yl X/Z]_ 0 . 0 51 up

X'y, 0 Xz ... 0 o)) U

: - : : : : + : ’

X’yG 0 0 X/ZG 5(; Uc
and

(I®X’)y:(l®x’)25+(l®x’)u
where
Z1 0 ... O y
n 0 Z ... 0 1
y: : 7Z: . . . 7u: . )
e 0 0 ... Zs Ue
V[(leX)u =2z ((XX),2= [Gij]i,jzl,...,G '

If we knew X, we could use the GLS-type estimator:
8ss= (Z |z L ex (x'x) X 2) 'z = tex (xXx) Xy,

SinceX is unknown, we can estimate it from 2SLS residuals:

5=1[6ij], 6ij =00;;/T, G=yi—Zdiss, i,j=1,...,G,
which yields the estimator

8ss= (7 |ELex (x'x) X 2) iz S tex (xx) Xy,

16



Under general conditions, we can show that
VT (835— 5) — N[0, %,

_ i 1, (s-1 I\ Lt -
Sas = phmhz (ztex(x'x) x)z} .

17
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