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1 INTRODUCTION
1 Introduction
R, or more appropriately the R programming language, is a very powerful platform used
to conduct a wide array of statistical analyses. It is light, fast, and most importantly,
it is free. This latter point has very importantly implications in terms of versatility and
adaptability - something we will talk about more when we discuss R packages.

Once opened, the interface of R may intimidate users who are used to nice point and
click interface of the Microsoft kind. There are no nice icons and the menu items do not
offer much in terms of usability. Nevertheless, this is precisely what one wants if one is
looking for efficiency - a property any serious econometrician does not take for granted.

1.1 R Syntax

Let us now turn to the console window and use R to perform some very basic functions.
This is done by interacting with the software at the command prompt >. Consider the
following command:

> 2+2

This produces the result:

[1] 4

The point of this exercise is to demonstrate how one interacts with R. In other words, the
user enters a command at the command prompt telling R what to do, then, R executes
the command and displays or stores the result. Having said this, it is important to notice
that R is a programming language and thus, it is only as intelligent as the user speaking
said language. Consider the following example. Suppose I want to compute the logarithm
of 10 with base 10. If I execute the command:

> log(10)

This yields:

[1] 2.302585

The correct response however is 1. What happened? Surely for such an important piece
of software such an embarrassing mistake is not befitting! Well, the reason for the error is
that R did not make the mistake. The user did! By executing the log function log(10),
R understood this to mean take the natural logarithm of 10. And indeed, the answer
above is correct. However, because we wanted the logarithm with base 10, we should
have specified this in R through the following:

> log10(10)
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1 INTRODUCTION
This indeed does yield the answer we desired, namely:

[1] 1

As exemplified by the above, it is crucial to realize that in R, as in all other programming
languages, the output is only as good as the input! In fact, consider another very com-
mon mistake. Suppose we define the variable x to be equal to two through the following
command:

> x = 2
And suppose now we want to compute twice the value of x. If we were to follow the con-
vention we often use when writing down mathematical operations, we would be inclined
to execute the following:

> 2x

Unfortunately, this would yield the output:

Error: unexpected symbol in "2x"

This is because R does not understand what 2x means. Had we been a little more precise
and used the multiplication operator *, we would have obtained the correct response
through the following:

> 2*x
[1] 4

On a related note, it is important to keep in mind that mathematical operators are not
all executed with the same priority. For example, recall that exponentiation is executed
before multiplication or division which are executed before addition or subtraction. Thus,
if we wanted to compute half the value of twice more the square of x, executing something
like:

> 2+x∧2/2

would yield:

[1] 4

The answer we were looking for however is 3. The reason for the discrepancy is that we
were not careful with what we were executing. What we required was the following input:

> (2+x∧2)/2

which gives the desired answer:
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[1] 3

1.2 R Scripts

We mentioned earlier that R is a very efficient software. One way this efficiency is mani-
fested is through something known in the programming community as a script. A script
is a set of instructions akin to what we were doing earlier which tells the software what
to do. In the simplest terms, this means that we can write as many instructions as we
wish and tell the computer to execute them in the order we wish without the need for
live interaction. For instance, say we wanted to obtain the results above at some later
time without having to write all of the functions from scratch. In this case, we can tell
R to execute all of our functions automatically by writing the script in any text editing
program including the standard Windows notepad. Once written, the file should be saved
with extension .r. Then, the script can be executed. We will return to this at a later time.

1.3 The Question Mark

Whether you are a master programmer or just starting out today, your best friend in R
is the help() function! Suppose we know the exact name of a function in R that we need
help with. For instance, consider the log function. If we want to see what help R can
offer on this function, we execute the following command:

> help("log")

This takes us to a page which allows to browse all the information about the said function.
This includes information such as how the function should be invoked, what arguments
it takes, what outputs it prints, etc. Here, we can scroll through the information using
the “up” and “down” keys, and return to the console window by pressing the “q” key.

Suppose on the other hand that we are not sure what the exact name of the function is. In
this case, we can search for keywords instead. Let us search for the keyword “logarithm”
via the following command:

> help.search("logarithm")

The latter command brings us to a list of all functions in R that match this keyword.
Moreover, note that the output is split into two columns. The first column displays the
functions associated with this keyword, while the second displays the description. More
importantly, take a closer look at the first column. Here, the output is organized as
library::function, or in our particular case, we have:

base::log
nlme::logDet

What this says is that our search has found two functions in R. The first is the function
log which belongs to the “base” package. The second function is the logDet function
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1 INTRODUCTION
which belongs to the “nlme” package. From here, we can press the “q” key to return to
the main console window and then proceed to read the help file on the log via the help
function discussed above.

Now, before proceeding to discuss packages, note that the functions help and help.search
can also be invoked via ? and ?? respectively. That is help("log") is the same as ?"log"
and invoking help.search("logarithm") is equivalent to executing ??"logarithm".

1.4 Packages

One of the things which makes R so powerful and versatile is its ability to use so called
packages. Packages here can be thought of as sets of functions and scripts aimed at
automating operations which would otherwise be very difficult to perform if we had to
write them out every time we needed them. For example, suppose that what we want to
obtain requires invoking 10 different functions in a specific order, on a set of arguments.
If we had to invoke these 10 functions every time we needed this result we would quickly
become very frustrated. Instead, suppose we write a script which combines these 10
functions into a single function. Then, all we have to do is invoke our one function and
specify only the arguments. R then takes care of the rest and we obtain our desired result.

A package then is a collection of functions and scripts aimed at performing specialized
statistical analyses. For instance, there are packages that deal only with operations used
in time series. Others only deal with cross-sectional data. Yet others deal with graphing,
etc. All in all, there are thousands of packages available for use. They can all be down-
loaded and they are all free. However, before one goes and downloads the first package
one finds, it is of importance to note that packages can be written by anyone, from Ph.D.
students to prominent world-class authors, and so it’s important to use packages which
will do the job properly!

To see the list of packages which are already installed with R, we invoke the following
command:

> library()

This brings up a page which lists all the packages installed in R and their description.
Suppose we are interested in the package called “stats”. To use this package we must
loaded it into the current R session. We do so as follows:

> library(stats)

Now that we have loaded the package what we are really after are the functions that
come bundled in it. To see what these functions are, we have to read the documentation
of the package. This is done as follows:

> library(help = "stats")
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1 INTRODUCTION
The above command produces a list of the functions and scripts in the package “stats”
along with short descriptions. Suppose that what we are seeking is a function which
provide quantiles and percentiles from the Normal distribution. It seems only natural to
consider the Normal script. Because we loaded the package to which this script belongs
earlier, we can read the documentation on it as follows:

> help("Normal")

Reading the said documentation, we see a section at the top titled “Usage”, which tells
us what functions can be invoked. The section immediately below this one, titled “Argu-
ments”, tells us what arguments need to be specified when we invoke the desired functions.
Suppose we are interested in the quantile which characterizes the right-most 2.5% of the
standard Normal distribution. What we want to use then is the qnorm function as follows:

> qnorm(.975)
[1] 1.959964

This answer should be very familiar. Suppose however that we require the same quantile
but from the Normal distribution with mean 1 and variance 2, or equivalently, the Normal
distribution with mean 1 and standard deviation

√
2. Consulting the documentation we

realize that this can be done as follows:

> qnorm(.975, mean = 1, sd = sqrt(2))
[1] 3.771808

Consider now that while browsing the for R functions and packages, we realize that the
function we want is part of package which we do not have installed in R. Luckily, down-
loading packages is a trivially easy task in R. Assuming that we have a working internet
connection, a package can be installed by invoking the following command:

> install.packages("nameofpackage")

As an example we will download the package called “fortunes”. This package is guaran-
teed to eat away at your productivity, but it’s a must have for anyone looking for yet
another way to procrastinate! Without further delay, let’s download this time waster:

> install.packages("fortunes")

Once executed, R will ask you to choose a server from which you wish to download the
package. Here you want to choose the server which is closest to your physical location
so as to have the fastest download rate. Once the download is complete we will load the
package as follows:

> library("fortunes")

Now, a quick look at the documentation reveals that the package “fortunes” has only one
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2 DATA INPUT
function, namely fortune. So let us invoke this function a few times and have some fun:

> fortune()

It is now clear what the function does. So anyone looking to waste some time while giving
the illusion to others that you are working, invoke the R fortunes function.

1.5 Setting Working Directory and Exiting R

It is often useful, not to mention cleaner to have a dedicated directory whenever working
on a particular project. This directory will serve to store your data files, your saved files,
your outputs, etc. Telling R what this directory is the subject of this section. Suppose
we have created a folder called “learningR” in the root directory “C:”. Then, setting said
directory as the working directory is done as follows:

> setwd("C:/learningR/")

That’s it. This directory is now stored into memory and any time R is opened it will be
working out of said directory. In this regard, suppose down the road we forget where our
files are stored and we wish to be reminded. This can be done as follows:

> getwd()
[1] "C:/learningR/"

Now that we have the basics of R, let us proceed to quit the program. This is done by
invoking the following command:

> q()

Upon invoking the quit function, R will ask:

Save workspace image? [y/n/c]

Then, pressing “y”, “n”, or “c”, corresponds to “yes”, “n”, or “cancel”, respectively. If we
press “y” R will exit having saved our variables. Next time we open R those same vari-
ables will be loaded automatically making the process very efficient.

2 Data Input
Entering data into R can be accomplished through several means. The most laborious of
these methods is entering each data point individually. The first step in this direction is
defining variables with a single point. In this regard, let us create the variables labelled
“a”, “b”, “c” which taking on the values 1,2, and 3, respectively as follows:

> a = 1
> b <- 2
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> c = 3

The first thing to note above is that the operators = and <- are equivalent and so either
one can be used. The second point to realize is that when we define variables, R does
not display no output in the console. Does this mean that nothing happened? No! To
see that we did in fact succeed in creating said variables, proceed by typing the variable
name at the command prompt and executing:

> a
[1] 1
> b
[1] 2
> c
[1] 3

Another way to see that we did indeed succeed is to take a look at the list of all the
variables created. This is done through the so called ls function as follows:

> ls()
[1] "a" "b" "c"

2.1 Multiple Data Points

In the previous subsection we demonstrated how to create a variable with a single data
point. Here, we would like to extend this principle and create a variable with multiple
data points. This is achieved with the “concatenation” function.

Table 1: Car Data

MPG EngineSize Horsepower Weight
1 25 1.80 140 2705
2 18 3.20 200 3560
3 20 2.80 172 3375
4 19 2.80 172 3405
5 22 3.50 208 3640
6 22 2.20 110 2880
7 19 3.80 170 3470
8 16 5.70 180 4105

Suppose we have data describing various characteristics of car models such as the mpg
in the city, engine size, horsepower, and weight, as summarized in Table 1. To enter the
data from into R we need to create five variables each containing eight data points. We
do this as follows:
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2 DATA INPUT
> mpg = c(25, 18, 20, 19, 22, 22, 19, 16)
> es = c(1.8, 3.2, 2.8, 2.8, 3.5, 2.2, 3.8, 5.7)
> hp = c(140, 200, 172, 172, 208, 110, 170, 180)
> wt = c(2705, 3560, 3375, 3405, 3640, 2880, 3470, 4105)

Let’s take a look at our “mpg” variable and see what comes up.

> mpg
[1] 25 18 20 19 22 22 19 16

What was created was an 1-by-8 vector labelled “mpg” containing the eight points we
entered earlier. The fact that our variables are vectors allows us to view, edit, or delete
any range of values we wish. For example, suppose we wish to know the value of the
third data point in the vector “es”. We can do this using square brackets as follows:

> es[3]
[1] 2.8

On the other hand, we can look at points three through 6 of the vector “hp” using the
colon notation like so:

> hp[3:6]
[1] 172 172 208 110

Perhaps we want to look at every point except the fifth in the vector “mpg”. This can be
done as follows:

> mpg[-5]
[1] 25 18 20 19 22 19 16

Or more complicated still, perhaps we want to look at every point except the third and
the fifth. This can be done using the c() function as shown below:

> mpg[c(-3, -5)]
[1] 25 18 19 22 19 16

Before moving on let us take a look at how to edit points as well. If we we made a mistake
in entering the second point of the “mpg” vector by typing 18 instead of 19, we can easily
rectify this and verify that we made the correct change:

> mpg[2] = 19
> mpg
[1] 25 19 20 19 22 22 19 16

Finally, note that similar changes can be made on more than one data point using the
concatenation operator.
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2.2 Stacking Variables

Now that we’ve seen how to create variables into R, let’s take a look how to stack them.
Stacking variables allows us to combine two vectors for example into a matrix, or, to
append vectors to existing matrices thereby increasing their dimension.

The fist thing we need to notice here is that c() must not be used carelessly. For example,
if we take the four eight-by-one variables we created earlier and combine them using the
concatenation function we do not obtain an 8-by-4 matrix, rather, we obtain a 32-by-1
vector as can be seen from the following:

> combo = c(mpg, es, hp, wt)
[1] 25.0 18.0 20.0 19.0 22.0 22.0 19.0 16.0 1.8 3.2
[11] 2.8 2.8 3.5 2.2 3.8 5.7 140.0 200.0 172.0 172.0
[21] 208.0 110.0 170.0 180.0 2705.0 3560.0 3375.0 3405.0 3640.0 2880.0
[31] 3470.0 4105.0

So why would anyone want to do this then? Well, as we will see later on in the course, we
can use indicator functions to extract the values we want from large vectors. This type
of analysis usually comes in handy when we deal with seasonality. But more on this at a
later time. It suffices to say that when a specific value of the indicator function is called,
the value we want is extracted. We now focus on creating such an indicator function. In
essence, we want a variable defined as follows:

> id = c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3,
3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4)
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

So, using the “id” variable, we can map the values from the “combo” variable as follows.
Whenever a 1 is called, we obtain the corresponding value in the “mpg” variable, when
a 2 is called, we get the corresponding value from the “es” variable, and so on. It goes
without say that this procedure is very inefficient for larger data sets. Luckily, R has a
very convenient solution through the rep() function. Consider the following:

> id = rep(c(1,2,3,4), each=8)
[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4

Obviously the two “id” sequences are identical. However, as long as we are on the subject
of sequences, let us look at the “seq()” function. The latter is used to create sequences
of various sorts. Suppose, we wanted to create a sequence of 1 to 4, by increments of 1.
That is, we want a sequence reading 1, 2, 3, 4. This can be done as follows:

> s4 = seq(1,4, by = 1)
[1] 1 2 3 4
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It is easy to see how this can be extended to various other combinations. Suppose for
example we wanted a sequence of 1 to 16 which moves in increments of three. This is
done as follows:

> s16.3 = seq(1,16, by = 3)
[1] 1 4 7 10 13 16

It is also important to note that we do not necessarily have to restrict ourselves to num-
bers when creating variables or sequences. That is, suppose we don’t like a numerical
way of identifying our variables, but we want to keep track of the names. This too can
be done as follows:

> idnames = c(’mpg’, ’es’, ’hp’, ’wt’)
[1] "mpg" "es" "hp" "wt"

Then, we can create a 1-by-32 vector of names as follows:

> idnames2 = rep(idnames, each = 8)

Also, a very important point here is that the argument “each” is essential. If it is omitted,
we will get something very different from what we had intended. To see this, note:

> idnames3 = rep(idnames, 8)
[1] "mpg" "es" "hp" "wt"
[5] "mpg" "es" "hp" "wt"
[9] "mpg" "es" "hp" "wt"
[13] "mpg" "es" "hp" "wt"
[17] "mpg" "es" "hp" "wt"
[21] "mpg" "es" "hp" "wt"
[25] "mpg" "es" "hp" "wt"
[29] "mpg" "es" "hp" "wt"

But looking at the above structure, we see that our original data is in precisely the above
form. The problem is, we have four 8-by-1 vectors and our data is in matrix form. So
how do we go about stacking our data to resemble Table 1 above? The answer lies in the
“column bind” function. The latter allows us to stack vectors horizontally. To see it in
action, observe the following:

> table = cbind(mpg, es, hp, wt)
> table

Executing the above expresses the data in the form of Table 1. In other words, the output
is no longer a vector, but an 8-by-4 matrix. As such, we should learn a few commands
which allow us access and manipulate various points of matrices. For example, if we want
the element found in row 3, column 4 of the matrix “table”, we issue the command:
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> table[3,4]
wt
3375

On the other hand, suppose we want all of the points in the second column, that is, we
want to extract the values of the variable “es”. This can be done like this:

> table[,2]
[1] 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7

Similarly, we can do something similar if we wanted to obtain all the values in row 7 as
follows:

> table[7,]
mpg es hp wt
19.0 3.8 170.0 3470.0

And finally, if we want to find out the dimension of any variable, we use the dim() func-
tion as folllows:

> dim(table)
[1] 8 4

Now, let us look at the row binding function rbind(). This function is analogous to the
cbind() function but instead of stacking variables horizontally, it stacks them vertically.
Let us repeat recreate the table above but with the variable names indicating the rows
rather than columns. This is done as follows:
> table2 = rbind(mpg, es, hp, wt)
table2

This type of operation is known as a transpose in mathematics and luckily, there is a very
quick way of doing it using the t(). Consider the above operation expressed as follows:

> table = cbind(mpg, es, hp, wt)
table
table = t(table)
table

Finally, note that all this time, we’ve been labelling our variables in a manner which may
confuse some. That is, we’ve been using the variable name as both the name and the
argument. In this case, note that the naming occurs AFTER the action on the argument.
Thus, looking at the third command above, we see that the existing variable “table” is
transposed first, and then it is named “table” again. This type of naming scheme clearly
overwrites existing variables which have the same name.
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2.3 Basic Matrix Operations

The matrix() function allows one to create a matrix of any dimension and fill it with
whatever data we please. Consider first the idea of creating an empty matrix of dimension
8-by-4.

> mat = matrix(nrow = 8, ncol =4)
> mat

As can be seen by executing the above, the matrix we created is precisely an 8-by-4 matrix
of empty values which R labels as“NA”. We can now proceed to fill in the values by using
one of the methods of element manipulation discussed earlier. But recall that our fist at-
tempt at using the concatenation operator on the 4 variables found in Table 1 produced a
32-by-1 vector. Well, we can now transform that vector into a matrix of conformable size
as follows. Because we have 32 elements, we can create an 8-by-4 matrix from it as follows.

> combo = c(mpg, es, hp, wt)
> mat = matrix(combo, nrow = 8, ncol = 4)
> mat

Thus, we see that we obtain the data in the form of Table 1, although there are no column
names. This can be fixed using the colnames() function like thus:

> colnames(mat) = idnames
> mat

Now, let us proceed to look at some very useful matrix operations. We will start by cre-
ating the identity matrix. The easiest way to do this in R is to use the diag() function
which is typically used to create diagonal matrices. Consider the identity matrix of size
6 for example:

> ID = diag(6)
> ID

The above command may be used in several other ways as well. For example, it can
create a matrix whose diagonal elements can be anything we want, and any dimension
we want, not necessarily squared. Consider a diagonal matrix of dimension 5 elements of
which take on the value 3.4 for instance.

> D = diag(3.4, 5)
> D

Or, consider a matrix of dimension 6-by-8 whose diagonal elements of the first block take
on some value, say 4.1. This is done as follows:

> D = diag(4.1, 6, 8)
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> D

Suppose now that I want my diagonal elements to take on some vector of values, not
just one repeating number. Let’s use some notation we used so far. Suppose I want a
diagonal matrix of dimension 5 whose diagonal elements are the values of the sequence
running from 1 to 10 in increments of 2. We can accomplish the task as follows:

> s = seq(1,10,2)
> D = diag(s,5,5)
> D

And finally, the diag() function can be used to extract the diagonal elements of some
matrix. This in turn creates a vector of the diagonal elements. So, let us recover the
diagonal elements of the matrix above as follows:

> d = diag(D)
[1] 1 3 5 7 9

Now, suppose I want to multiply two matrices together. Unlike what you may think,
using the multiplication operator * naively will NOT give you the correct answer. This
is because the latter is used for element by element multiplication, whereas matrix mul-
tiplication has its own syntax. Let’s take a look at an example.

Consider two matrices A and B as follows:

A =

[
1 0 −2
0 −3 1

]
B =

 0 3
−2 −1
0 4


The product AB is the following:

[
1 0 −2
0 −3 1

]
×

 0 3
−2 −1
0 4

 =

[
0 −5
−6 −7

]
Thus, consider doing the same in R. We begin by creating the two matrices as follows:

> A = c(1, 0, 0, 3, -2, 1)
> A = matrix(A, 2, 3)
> A
> B = c(0, -2, 0, 3, -1, 4)
> B = matrix(B, 3, 2)
> B

If we were now to naively issue the * operator in order to multiply the two matrices
above, we would get an error. This is because matrix multiplication is done through the
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following syntax:

> C = A%*%B
> C

This indeed does give us the correct answer. However, suppose now that I want the
inverse of this matrix. This can be done using the solve command as follows:

> Cinv = solve(C)
> Cinv

Notice that the above is written in decimals, but the numbers look relatively nice. This
indicates that they may be nicely expressed as fractions. How would we do this. Well,
fractions(), the function which converts floating points into fractions is located in the
“MASS” package. We loaded it as follows:

> library(MASS)

Now, we proceed to express our matrix in fractions as follows:

> Cinv = fractions(Cinv)
> Cinv

Finally, let’s at look at how to compute the determinant and eigenvalues and eigenvectors
of a matrix by computing it for the matrix “C” above. Consider first the determinant
computation:

> det(C)
[1] -30

And now, let’s compute the eigenvalues and eigenvectors like so:

> eigen(C)

We see that executing the above command gives us both the eigenvalues and the vectors
associated with them.

2.4 Combining, Importing, and Exporting Data

Now that we have created some data, let us look at a very useful R construction, the
“data frame”. This is something very similar to the matrix of data we created earlier, but
much more versatile. In fact, imagine the data frame as a vault in which you can place
any data of both numerical and string types, as long as they are conformable. Moreover,
a data frame is never operated on, but rather, one simply draws what one needs from it
and then proceeds to manipulate the data on the extracted data. Thus, a data frame can
be considered as a vault from which one draws information, and it serves as an archive
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of the data.

For example, recall that we created a matrix of the car data by combining our four vari-
ables. But now, let us package those same four variables into a data frame as follows:

> dtfrm = data.frame(MPG = mpg, ES = es, HP = hp, WT = wt)
> dtfrm

Now, the first thing to notice is that the variables MPG, ES, HP, and WT are NOT
in the variables list. To see this, just issue the ls() command. This is because the
latter variables are in the archive so to speak and they are not meant to be manipu-
lated, but rather used. So, let us for example use the variable MPG in the data frame to
create a new variable which is twice its value. This is done using the $ operator as follows:

> mpgx2 = 2*dtfrm$MPG

So what’s the big deal? We could have done the same thing with a matrix and vector con-
structions. True, but the importance lies in the fact a data frame can contain vectors of
strings in addition to numbers, so long as they correspond to the same data and are con-
formable. So our data is in a different container and it is NOT a matrix! In fact, if we had
a vector of size 8 consisting of string values, we would be able to add that as well. This is
also relevant because most data one finds or uses usually comes in a data frame container.

Suppose then we have some data we wish to use. How do we import it? This is perhaps
one of the most useful operations in R and should be committed to memory. Let us begin
by noting that most data is either in its raw “.dat” or “.txt” form, and usually comes with
variable headers. For example, consider the following set of data taken from the net, de-
scribing some quarterly, log-transformed time series from the German economy starting
from 1960.

Table 2: German Time Series

invest income cons
1 5.19 6.11 6.03
2 5.19 6.14 6.04
3 5.22 6.18 6.07
4 5.26 6.20 6.10
5 5.35 6.23 6.13
...

...
...

...
90 6.71 7.87 7.71
91 6.72 7.87 7.72
92 6.72 7.88 7.73

The above data is located in our working directory under the name “e1.dat”. Let us
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therefore attempt to load it into R. The first thing to notice is that this data is nicely
ordered into columns and has column headers, or variable names. So, the appropriate
command to load the data will be:

> e1 = read.table("e1.dat", header = TRUE)

Issuing the above command creates a data frame using the original data. Thus, it is not
a matrix and so, any manipulations on the data need to be done on constructions we take
henceforth.

A related concept of course is data exportation. This is done in an analogous, but reverse
manner. Let us suppose that we have some object in R that we wish to save; perhaps a
data frame, a matrix, a vector, etc. This can be done as follows:

> write.table("object", "nameoffile.txt", col.names = TRUE)

Suppose we name our file “rdata.txt” and the object we save is data frame “dtfrm”. Then,
our command will look like this:

> write.table("dtfrm", "rdata.txt", col.names = TRUE)

So where is this file? Well, if you recall, last time we defined our working directory using
the setwd() command. So, our file is located in our working directory, which, if we
needed a reminder, could be displayed with the getwd() command.

It is crucial to note that when exporting data with the write.table() command, the
object we save is a data frame. So, if had saved the matrix “A” we created earlier using
the above method, it would no longer be a matrix when we load it via the read.table()
command. So how do we save and load variables themselves? This is done with the
save() and load() functions.

The save() command takes the following syntax:

> save(var1, var2, var3, etc.., file = "nameoffile.rda")

Let us use the above to save the variables “idnames”, “A”, and “dtfrm” into a file called
“rdata.rda”. This is done as follows:

> save(idnames, A, dtfrm, file = "rdata.rda")

Now, let us proceed to delete those same variables from our current R session. This is
done using the rm() command like this:

> rm(idnames, A, dtfrm)

But let’s suppose we now want to use those same variables again. We can load them from
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our saved file as follows:

> load("rdata.rda")

Again, recall that all files are saved to and loaded from the working directory.

3 Plotting
One of the things R is renown for is plotting capabilities. It is arguably one of the most
powerful plotting platforms in existence today! In this section we will cover some of these
capabilities in pragmatic detail.

In the previous section we briefly loaded the German investment data “e1.dat”. This
data comes from Lutkepohl’s jMULTi website under the data section for his book New
Introduction the Multiple Time Series Analysis. If the data is already loaded into R we
can proceed to the next paragraph. However, if it’s not, let’s load it first:

> e1 = read.table("e1.dat", header = TRUE)

Now, using the function is.data.frame(), one can verify that the element “e1” is indeed
a data frame. This means we can use variables using the $ operator. However, before
doing so, let’s take a look at what variable were actually loaded using the names command.

> names(e1)
["invest" "income" "cons"]

Thus, we have three variables under the above headings. Let’s look at a primitive plot
of how the data variables behave in relation to each other. In other words, let’s look at
a scatter plot. We’ll start first by comparing “invest” and “income”. We start by first
attaching the data set.

> attach(e1)

Next, we plot the data as follows:

> plot(invest, income, xlab = "Investment", ylab = "Income", main =
"German Investment Data", sub = "Income vs. Investment")
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As can be seen, the first 2 arguments are the variables on the x and y axes respectively,
while the last two arguments are the labels we wish to impose on the respective axes.
However, suppose, we wanted to determine the inverse relationship. One way is to switch
the first two arguments, but another way is as follows:

> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment")
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3.1 Working With Symbols

By default, R prints plots using circles as points. This can be changed however, and
sometimes it’s necessary to do so. Different points are represented by numbers running
from 1 to 255 so there is a large variety. The argument which needs to be specified in the
plot function is “pch”. Let’s look at some examples.

> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch = 2)

> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch = 3)

> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch = 12)

But suppose now that I only wish to isolate a few points and represent them by different
points for easy identification. In this case, I can create a vector the size of my data set
with each number representing a “pch” we would like to use. For concreteness, suppose
we want to isolate points 10, 20, and 30 and we want to represent these three points with
three different symbols, leaving all other points unchanged. A quick application of the
dim() function tells us that each of our variables has 92 points. So consider the following:
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> threep = rep(1,92)
> threep[c(50,60,70)] = c(2,3,12)
> threep
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[26] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
[51] 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch =
threep)

3.2 Working With Colours

Color can be a very important aspect of graphs so it merits our attention. Colour is
activated via the “col” argument. Its functionality is identical to that of “pch”. Thus, we
repesent colours using numbers or vectors of numbers. Let’s see some examples.

> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch =
threep, col = 3)

, Or, if we want to represent our three points in red, consider:

> threec = rep(1,92)
> threec[c(50,60,70)] = rep(2,3)
> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch =
threep, col = threec)

Or, if you’ve been eating Skittles all day and want to see the rainbow, try this:

> rnbw = c(1:92)
> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch =
threep, col = rnbw)

3.3 Working With Sizes

Another very important argument is “cex”. Its function determines the size of points and
its usage is identical to “pch” or “col”. As a quick example, let’s enlarge our three points.

> threes = rep(1,92)
> threes[c(50,60,70)] = rep(2,3)
> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch =
threep, col = threec, cex = threes)
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And to close, consider a very fun example.

> library(MASS)
> rnbws = abs(mvrnorm(92,1,1))
> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",

main = "German Investment Data", sub = "Income vs. Investment", pch =
threep, col = rnbw, cex = rnbws)s
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What we did above was as follows. First, we loaded the “MASS” package. This is because
we want to use the function mvrnorm() to simulate points from the Gaussian (Normal)
distribution with mean 1 and standard deviation 1. This is so that we can get a random
collection of points which we can then use as the basis for our sizes. Finally we use this
vector and create a plot whose points are random, following the aforementioned distri-
bution.

To close this section, let’s briefly take a look at the size, or length in this case, of the
axes. Using the parameters “xlim” and “ylim” we can adjust the limits of our axes. So,
as an example, we will limit the x-axis to the interval [750,2250] and the y-axis to the
interval [350,650]. This yields the following figure:

> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", pch =
threep, col = rnbw, cex = rnbws, xlim = c(750,2250), ylim = c(350,650))
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3.4 Superimposing Lines

Sometimes it is necessary or useful to superimpose lines on the original graph in order to
indicate the presence of something of importance. For example, suppose that for some
reason, the number 500 on the y-axis is of importance. In this case, we can create a
horizontal line on this axis crossing 500 at the origin. Consider the following code:

> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", cex = 1.5)

Now that we have our graph, let’s plot the horizontal line.

> lines(x = income, y = rep(500,92))

Or, if we wanted a horizontal line at 1000, the following code will suffice.

> lines(y = invest, x = rep(1000,92))

However, as important as such lines may be, a far more important superimposition in
practice is that indicating a smoothed fit for the set of points. This is achieved through
a combination of functions which should be studied using the help functions.

The smoothing method we will use is called LOESS smoothing function and we can see
it on our graph using the following sequence of commands:
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> m.loess = loess(invest ˜ income, data = e1)
> fit = fitted(m.loess)
> lines(income, fit, col = 2, lwd = 2, lty = 3)

So what did we do? First fitted a LOESS model to the relationship between investment
and income. Secondly, we extracted the set of fitted points from this model. This is in
a sense the regression line form a non-linear regression model. Finally, we superimposed
this fitted line on our original scatter plot. However, a picture tells a thousand words
so to speak and our graph is no different. Moreover, using the “col” argument in the
lines() function we were able to change the colour of the smoothing curve, while using
“lwd” and “lty” we were able to change the width and style of the line respectively. All
of this is summarized in the figure below.
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3.5 Saving Plots

Now that we know how to create plots. Let’s take a look at how to save them. The
method of saving plots is a multi step process in R. First, we need to issue the jpeg()
function and specify the name of the file we wish to save our plot to. Let’s do that now.

> jpeg("savedplot.jpeg")
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Next, we create our plots using the methods covered in the previous subsections. How-
ever, this time, when we issue the plot() commands, no output will be shown. This is
because the plots will be directly written to the file we specified. So, let’s recreate our
plot with the smoothing line.

> plot(y = invest, x = income, xlab = "Investment", ylab = "Income",
main = "German Investment Data", sub = "Income vs. Investment", cex =
1.5)
> lines(income, fit, col = 2, lwd = 2, lty = 3)

Once we are satisfied, we can turn off the “save-to-jpeg” environment by issuing the fol-
lowing command:

> dev.off()

Now, as before, issuing plot() commands will produce the plot on the screen.

3.6 Plot Annotations

Now, learning a few more tricks of the trade, let’s put what we’ve learned together into a
very nice example. What we want to do here is to draw points from the Gaussian density,
plot those points, and then draw the theoretical density of the latter distribution on top
of those points to show that they do indeed fall on the said curve. Finally, we want to
annotate the graph with textual and mathematical expressions.

Our first task here is the simulate a large number of points from the standard normal
distribution. We saw earlier that this can be done using the mvrnorm() function from
the “MASS” package.

> xgauss = mvrnorm(100,0,1)

Now that we have obtained the drawings, it’s time to convert these drawings into the
values of the density that correspond to them. This can be done by making use of the
dnorm() function from the “stats” package we looked a few lessons ago. This function
takes the vector of inputs and yields the vector of values of the density that corresponds
to this vector of inputs.

> ygauss = dnorm(xgauss)

We now have the points we wanted to simulate. Now, let’s use the curve() function
to plot the theoretical curve from the standard normal density. Adding of course some
titles, colours, and adjustements, this can be done as follows:

> curve(dnorm, from = -3, to = 3, col = 24728, lwd = 3, main = "Standard
Normal Density", ylab = expression(phi(x)), xlab = expression(x))
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Next, let’s see how our points compare to this graphic. To superimpose our points we
will use something very similar to the lines() function we used earlier. We will use the
the points function.

> points(xgauss, ygauss, col = 2)

Next, let’s add some lines for the mean and standard deviation.

> lines(rep(0,100),seq(0,3.96,0.04), lwd = 2, col = 4)
> lines(rep(-1,100),seq(0,3.96,0.04), lwd = 2, lty = 3, col = 3)
> lines(rep(1,100),seq(0,3.96,0.04), lwd = 2, lty = 3, col = 3)

Now, let’s annotate our graph to make it look very pretty. Let’s start with the mathemat-
ical expression for the standard normal density. This is achieved using the “expression”
argument.

> text(-2.75,0.2, expression(f(x) == frac(1, sigma ~~
sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}),
adj = 0, cex = 1.25)

Next, add the annotations for the mean and standard deviation.

> text(0,.15, expression(mu), cex = 1.25)
> text(.5,.15, expression(+sigma), cex = 1.25)
> text(.5,-.15, expression(-sigma), cex = 1.25)

And finally, if we really wanted to see what distribution our sample takes on, we can add
tick marks to each of the axes using the rugs() function as follows:

> rug(xgauss)
> rug(ygauss, side = 2)

All of the above is summarized in the following figure.
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At the end, when we see how pretty our graph looks, we can see that our effort was not in
vain! Needless to say, the possibilities of making pretty graphs is endless in R, so have fun!

The material covered so far should be enough for a basic understanding of the plot()
function and related concepts. Due to the fact that plotting in R is a vast area of exper-
tise, additional concepts shall be covered as they arise throughout the remaining material.

4 Data Exploration
In this brief section, and before delving into more serious matters of linear regression,
let’s take a look at some primitive means of data analysis. To start, let’s load the data
set we looked at earlier on car makes and specifications. This data set is located in the
“MASS” library. If it’s not loaded, load it now, and then proceed to load a data set called
“Cars93” as follows.

> data("Cars93")

Now that the data has been loaded, let’s look at some facts whcih characterize it. Start
with the function str(). This should give us a very primitive overview of what the vari-
ables are, their structure, size, etc.

> str(Cars93)
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The above tells us that our data is contained in a data frame, it has 93 observations,
27 variables, and then proceeds to tell us what those variables are and the type of data
contained in them. Here, “Factor” means that the data is a cateogrical indicator, “Num”
indicates it’s numerical, therefore floating point, and “Int” implies that the data is an
integer, therefore whole numbers.

We can also view the first and last 6 entries of this data table using the head() and
tail() functions respectively.

> head(Cars93)
> tail(Cars93)

Yet a more detailed description is obtained using the summary() command, which, in
addition to descriptors we’ve seen so far, also yields descriptive statistics for numerical
and integer-based variables.

> summary(Cars93)

Here on forth we will need to access the variables in this data set. As we’ve seen so
far, we’ve been doing this using the $ operator. For example, if we want to “MPG.city”
variable, we would obtain it via the command:

> Cars93$MPG.city

As this can get very tedious very quickly, we’re going to introduce a new command called
attach(). This command will attach the data set “Cars93” directly into the R search
tree so that we can access variables directly by their names. Consider:

> attach(Cars93)
> MPG.city

A word of caution here. It is very important that when using the attach() command that
there are no variables with conflicting names. That is, if we had attached the “Cars93”
and wanted to use the variable “MPG.city” that was NOT in the “Cars93” data.frame, we
would not get it. We would get the variable “MPG.city”, but the one in the “Cars93” data
frame. Thus, it is very important to name variables appropriately. Moreover, when done
using the data, it should be detached in a similar fashion using the detach() command.

5 Linear Regression
The linear regression model is the foundation of modern econometrics. As such, learning
how to work with it is of the utmost importance. Its typical form in most of the literature
is presented as the following vector expression:

y = Xβ + ε
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Above, y and ε are T×1 vectors, X is an T×k matrix, while β is a k×1 vector. Moreover,
y is the regressand vector, or the endogenous variable, whereas as X is the matrix of
regressors, or the matrix of exogenous variables. Furthermore, as is typical in this context,
we assume that the error terms which constitute the ε vector, are independent of the
regressors and are IID with mean zero and variance σ2. Mathematically, this implies the
following two conditions:

E(ε|X) = 0

V (ε|X) = σ2I

The most widely used estimator of regression coefficients from the above model is known
as the “ordinary least squares” (OLS) estimator, usually denoted β̂ is provided below for
reference.

β̂ = (X>X)−1X>y (1)

From the above, note the following two very important quantities. The fitted values,
which we denoted as ŷ = Xβ̂ and the vector of residuals, ε̂ = y − ŷ.

Now that we’ve introduced the theory, let’s continue the journey by looking at a model
which will analyse subscriptions to major academic journals in Economics. In particular,
let’s look at the relationship between the number of subscriptions to Economics journals
at US libraries as a function of subscription prices.

To begin, we must first download the data set. It is found in the package “AER”. We
must first download it and then load it.

> install.packages("AER")
> library(AER)

Now that we have loaded the package, let us load the data set “Journals”.

> data(Journals)

Let us now briefly look at the data set to see what it contains. To see the variables
contained in the data frame, we issue the following command:

> names(Journals)

We can get more insight issuing the summary() command. Consider:

> summary(Journals)

Because we are interested in looking at the subscriptions as a function of price, let us
therefore create a data set which will extract these two variables.
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> journals = Journals[, c("subs", "price")]

Moreover, to get a sense for the price per quality of a journal, we will create such a
measure by looking at subscription price per citations of the journal. Here, “citations”
is the total number of times the journal is cited in academic works. Clearly then, the
number of citations is an indicator of the quality of the journal. Consequently, a lower
price / citation ratio indicates that one is paying less for higher quality journals. Thus
create the following variable:

> journals$citeprice = Journals$price / Journals$citations

Now, before proceeding any further, it is time to see first hand why studying your data
BEFORE doing any major analysis is absolutely essential! Start by plotting “citeprice”
vs. “subs”.

> plot(journals$citeprice,journals$subs)
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It is difficult to see what the relationship looks like. However, a little reflection will
show that the pattern is really a power law curve of the form y = axp, for p negative and
some positive a. To see this, create the figure above by superimposing the following curve:

> par(new=TRUE)
> curve(x∧(-5), from = 0, to = 50, col = 2, axes = FALSE, xlab = "",
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ylab = "")

What this implies is that if we had naively run a linear regression model on “subs” on
“citeprice”, we would have severely misspecified the model as axp, which is clearly far from
linear. However, given that we know what curve the data follows, it is an easy matter
to linearize the model by transforming the data using the logarithmic function. Thus,
consider the transformed variables:

y = axp

log(y) = log(a) + p log(x)

It is clear then that the the two variables which do yield a linear relationship are log(y)
and log(x). To see this then, consider the plot of the transformed variables.

> plot(log(journals$citeprice), log(journals$subs))
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Clearly the data points look far more linear after the transformation. Given this new
insight, let us proceed to fit a linear regression model of the form:

log(subs)t = β0 + β1 log(citeprice)t
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The main function which deals with regressions and model fitting is the lm() function,
which stands for “linear model”. We start by first attaching the data set “journals” so
that we can call variables up without referring to their data frame.

> attach(journals)

Next, let us fit the linear regression in question as follows:

> journals.lm = lm(log(subs) ˜ log(citeprice))
Let us now add the regression line to our existing plot using the abline() function. The
latter function extracts the regression line from the estimated model and superimposes
it in one shot, see figure above. Consider:

> abline(journals.lm, col = 3)

Here, it should be noted that, although we have only specified one regressor, namely
“citeprice”, it is implied that there is a constant term involved. It is important to keep
this in mind whenever performing linear regressions in R.

5.1 Preliminary Regression Analysis

The element “journals.lm” is very important here and contains much useful information.
To see what is located in it, let us do some snooping.

> names(journals.lm)
> summary(journals.lm)

This last input is very important. It yields the essential information from the regres-
sion. That is, the coefficient estimates, the t statistics, the p-values, and some other very
important information. Two of these rare particularly important. The first is the inter-
pretation of the p-values presented. Here, the p-value corresponds to the null hypothesis
that the value of the coefficient is equal to zero. In our particular case, the fact that
p-values are very close to zero means that we reject the null hypothesis at higher signif-
icance levels. That is, whenever the p-value is less than the level we specify, we reject
the null hypothesis. Because we do reject the null hypothesis in our case, we say that
the coefficient estimates are significant. That is, they are significantly different from zero!

5.2 Confidence Intervals

The second important aspect we need to analyse here are the standard errors of coefficient
estimates. These are particularly important when we desire to obtain confidence intervals
of the OLS estimator. The latter are obtained by noting the following relationship:
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Pr{tα/2 ≤
β̂ − β
σ̂β̂

≤ t1−α/2} = 1− α (2)

We note here that the fraction in the middle of (2) above is distributed as a t-distribution
with (n−#regressors) degrees of freedom, where n is the sample size. As a result, tα/2
and t1−α/2 are the α/2 and 1− α/2 quantiles of the t distribution, and alpha is the level
corresponding to the significance level. In this light, we note that the standard errors
required to compute the above are indeed given in the summary of the model we just
estimated, and are the square roots of the diagonal elements of the covariance matrix of
β̂. The latter is, recall, given by the following:

V {β̂} = σ̂2
ε̂ (X

>X)−1

We can indeed compute the confidence interval manually by manipulating the matrix of
regressors, the vector of residuals, and the vector of coefficients, the latter two quantities
being extracted from our estimate model as follows:

> resid(journals.lm)
> coef(journals.lm)

Or, R can do the dirty work for us, and we can obtain the confidence interval of the OLS
coefficients automatically by issuing the following command:

> confint(journals.lm, level = .912345)

Here the level is any value we wish and corresponds to α in the theoretical derivation of
the confidence interval we derived above.

5.3 Prediction

As long as we are on the subject of confidence intervals, let us also discuss prediction.
That is, now that we have our model estimated, we can actually put it to good use and do
some prediction with it. However, before doing so, we must make sure that we distinguish
between “mean prediction” and “individual prediction”.

Mean prediction is the following derivation given the basic assumptions of the classical
linear model.

y∗mean = E{y|X} = Xβ̂ + E{ε̂}
= Xβ̂

Individual prediction however is the following statement
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y∗individual = Xβ̂ + ε̂

The difference between the two can be shown to be the variance of the predicted values.
The former has a smaller variance than the latter and hence, the former yields a narrower
prediction band than the latter. To see this, consider

V {y∗mean} = V {Xβ̂}
= V {Py}

The above holds true because the fitted values are Py. Analogously, we have the following:

V {y∗individual} = V {Xβ̂}+ V {Xε̂}
= V {Py}+ V {My}

Again, the above holds because the residuals are My and the fact that the fitted values
and residuals are uncorrelated. Moreover, the fact that the variances of the fitted values
and residuals are positive semidefinite, it holds that the variances of the data points pre-
dicted using the individual method have wider confidence bands than those of the points
predicted using the mean method.

Now that we have this distinction, we can generate mean predicted values for y by first
specifying the vector of x values we wish to correspond to our prediction. For example,
if we wanted to predict y for the 61 values of x ranging from -6 to 6 by increments of 0.2.
Note that this example gives the prediction for y for values of x which are NOT in the
original set of data points. In fact, it extends the data points beyond the minimum and
maximum value of log(citeprice). All in all, we can do this as follows:

> x = seq(-6,6,.2)
> predc = predict(journals.lm, data.frame(citeprice = exp(x)), interval

= "confidence")

On the other hand, if we wanted the wider prediction corresponding to the individual
prediction method, we would issue the following command:

> predp = predict(journals.lm, data.frame(citeprice = exp(x)), interval
= "prediction")

A very important thing to note here is the data.frame() argument used above. Note
that we have used “citeprice” and NOT log(citeprice). This is because the variable of
interest is “citeprice”, even though when we ran our regression, we had used the trans-
formed variable, log(citeprice). Thus, R is aware that we had used a transformation. As
a result, when we specify our “data.frame()” argument, we specify it in terms of the base
variable of interest “citeprice”. However, note that citeprice = exp(x) really implies that
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log(citeprice) = x and so our scales are not different.

Note also that if we issue the command to view the above variables, we would note that
they have three columns. The first, called “fit”, is the OLS fitted value which we know as
Py, corresponding to the values of x we chose for prediction. The other two columns are
“lwr” and “upr”, corresponding to the lower and upper confidence interval values for our
prediction, respectively.

> predc
> predp

Finally, to see all this in graphical form, where it is easier to visualize the impact of
prediction, consider issuing the following commands:

> plot(log(citeprice),log(subs), xlim=c(-6,6))
> abline(journals.lm, col = 3)
> lines(x, predc[,2], col = 2, lty = 2)
> lines(x, predc[,3], col = 2, lty = 2)
> lines(x, predp[,2], col = 4, lty = 2)
> lines(x, predp[,3], col = 4, lty = 2)

..
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5.4 Linear Hypothesis Tests

One of the most important areas of inferential exercises such as linear regression is hy-
pothesis testing. This is the area of econometrics where one usually tests whether a
parameter or a set of parameters satisfy some equality or inequality constraints. In the
previous sections, we saw that using the summary() function on our estimated model
yielded the critical values and their corresponding p-values for simple hypotheses on the
individual OLS parameter estimates. We also saw that individual hypotheses of this sort
were distributed as t-statistics. However, sometimes, it is necessary to test joint linear
hypotheses; that is, testing that two or more parameters jointly satisfy some linear con-
straints.

Generalized linear hypotheses can be described mathematically as follows:

Rβ = r

Above, R is a q × k matrix, β is a k × 1 vector, and r is a q × 1 vector. In other words,
the resulting vector Rβ denotes the q linear relations of the parameters β, and r is the
vector denoting the restrictions. For example, consider a model consisting only of two
parameters, β0 and β1, and suppose we wish to test the single null hypothesis that β1 = 0.
This hypothesis can be written as follows:

[
0 1

] [β0

β1

]
=
[
0
]

Suppose now we wish to test the hypothesis that β0 and β1 are jointly equal to zero. In
this case, our hypotheses can be described as follows:

[
1 0
0 1

] [
β0

β1

]
=

[
0
0

]
Testing more general linear hypotheses is performed using the linearHypothesis()
function located in the “car” package. This package should have been installed when the
package “AER” was installed. Thus let us load the latter:

> library(car)

Let us verify the simple null hypotheses provided by the summary(journals.lm) func-
tion, using the more generalized approach. This can be done using the following two
constructions:

[
1 0

] [β0

β1

]
=
[
0
]

[
0 1

] [β0

β1

]
=
[
0
]
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Now, create the two restriction matrices used above:

> R0 = c(1,0)
> R1 = c(0,1)

The above can now be used in the hypothesis testing function as follows:

> linearHypothesis(journals.lm, R0, 0)
> linearHypothesis(journals.lm, R1, 0)

It is not obvious that results from the above are equivalent to those presented in the
summary of our estimated model, however, they are. To see this, note that the above
function uses the F-statistic. However, recalling that squaring the t-statistic yields the
F-statistic, one can see that the critical values are indeed equivalent. Consider that in the
summary function, the two t-value critical values for testing β0 = 0 and β1 = 0, are 85.25
and -14.97 respectively. However, note that 85.252 = 7267.562 and (−14.97)2 = 224.1009.
Since the latter two are the respective critical values from the hypothesis testing function,
we see that the two methods do indeed coincide.

6 Multiple Linear Regression
Now that we’ve had a taste of linear regression analysis, we extend the previous section
to linear models with more complicated regressors both in terms of functional form and
quantity. In particular, we will perform inferential exercises on wage estimation using US
Census Bureau data from March 1988. This data set contains over 28 000 data points
and is therefore a prime platform for serious econometric analysis. Let’s load the data
and take a brief look:

> data(CPS1988)
> summary(CPS1988)

Here, “wage” is in dollars per week, “education” and “experience” are in years, and “eth-
nicity” is a variable with two factors: “caucasian” and “afriacan-american”. Furthermore,
“smsa” is variable with two factors, “yes” and “no”, indicating whether the person ques-
tioned resides in the standard metropolitan statistical area. “Region” has four factors
denoting the four regions of the United States of America, and “parttime” has two fac-
tors denoting whether the person questioned worked as part time or full time. Finally,
following the analysis of Bierens and Ginther (2001), the variable “experience” is usually
computed as “age” - “education” - 6, and is therefore not actual work experience, but
rather potential work experience.

The model we will be analysing is as follows:

log(wage) = β1 + β2experience+ β3experience
2 + β4education+ β5ethnicity + ε (3)
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The above model is a staple in labour econometrics literature and is known as the Mincer
wage model, Mincer (1958, 1978). To see why equation (3) takes the form that it does,
let us briefly review the details involved in deriving the Mincer model.

6.1 Mincer Wage Equation

To begin with, denote potential earnings at time t by Et. Mincer assumes that each
period, an individual invests a fraction kt of his potential earnings in human capital
(self improvement). Moreover, Mincer assumes that each period this investment yields a
return of rt. In other words, we have the following dynamic equation:

Et+1 = Et(1 + rtkt) (4)

After repeated iterations, equation (4) can be expressed as:

Et = E0

t−1∏
i=0

(1 + riki) (5)

Applying logs to both sides of equation (6), we obtain the following relationship:

logEt = logE0 +
t−1∑
i=0

log(1 + riki) (6)

Assuming that an individual invests s years of his life to full-time schooling, it is logical
to suppose that 100% of the individual’s potential earnings are foregone as a result of
this investment. That is, we assume:

k0 = . . . = ks−1 = 1 (7)

In this regard, we also assume that returns to potential earnings from each year of school-
ing is constant through time, and so we suppose:

r0 = . . . = rs−1 = β (8)

Finally, it’s not a far stretch to assume that returns to potential earnings in terms of
post-schooling investment to human capital is also constant:

rs = . . . = rt−1 = λ (9)

Given assumptions (7) to (9), we can express (6) as:

logEt = logE0 + s log(1 + β) +
t−1∑
i=s

log(1 + λki) (10)
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Now, using the approximation that log(1 + a) ≈ a if a ≈ 0, we have the following
approximation:

logEt ≈ logE0 + βs+ λ
t−1∑
i=s

ki (11)

Next, to establish the link between potential earnings and work experience x, Mincer as-
sumes that investment in human capital decreases linearly over time in the post-schooling
period, and so, denoting by x ≥ 0 the post-schooling years, that is x = t− s ≥ 0, letting
η ∈ (0, 1), and defining T as the last year of an individual’s employment career, we have:

ks+x = η
(

1− x

T

)
(12)

Now, substituting (12) into (11), we have:

logEt ≈ logE0 + βs+ λ
t−1∑
i=s

η(1− i

T
)

= logE0 + βs+ λη(t− 1− s+ 1)− λη

T

t−1∑
i=s

i

= logE0 + βs+ ληx− λη

T

x∑
i=1

i (13)

However, note that the sum in (13) is really a sum of x consecutive integers. Now, using
the fact that a sum of N consecutive integers equals N(N+1)

2
, we have:

logEt ≈ logE0 + βs+ ληx− λη

T

x(x+ 1)

2

= logE0 + βs+

(
λη +

λη

2T

)
x−

(
λη

2T

)
x2 (14)

If we now subtract (12) from (14), that is, if we subtract total investment cost of hu-
man capital in the post schooling years from current potential earnings, we obtain an
expression for net potential earnings, or:

logEt − η
(

1− x

T

)
≈ logE0 − η + βs+

(
λη +

λη

2T
+
η

T

)
x−

(
λη

2T

)
x2 (15)

Next, denote by logNPEt the log of net potential earnings. Also, set β1 = logE0 − η,
β2 =

(
λη + λη

2T
+ η

T

)
, β3 = −

(
λη
2T

)
, β4 = βs. Then, (15) becomes:

logNPEt ≈ β1 + β2x+ β3x
2 + β4s (16)
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Finally, Mincer assumes that wages at time t reflect the net potential earnings at time t,
considering that in the contrary, one would either be underpaid or overpaid. Given this
assumption, we obtain the final form of the Mincer wage equation, or:

logwt ≈ β1 + β2x+ β3x
2 + β4s (17)

If we now set x = experience and s = education, it becomes clear that the model we set
out to estimate in (3) is indeed the augmented Mincer wage equation (17), which we now
proceed to put into practice.

6.2 Estimating the Wage Equation

To estimate model (6) above, we proceed by first attaching the “CPS1988” data set, then
estimating it in the usual way in R:

> attach(CPS1988)
> cps.lm = lm(log(wage) ˜ experience + I(experience∧2) + education +

ethnicity)

Here, notice that in specifying the square of the “experience” operator, we used I(experience∧2).
(This is important as otherwise the ∧ operator would have been understood by the linear
model function in R as requesting what is known as an interaction.) Moreover, notice
that this is a regression which, although linear, contains non-linear regressors. In fact,
the regression model of the type seen above is known as a polynomial or curvilinear re-
gression due to the presence of polynomial type regressors.

6.3 Interpreting Parameter Estimates

Now, that the model has been estimated, let’s view the results of the regression by issuing
the following command:

> summary(cps.lm)

Next, recall our definitions of β1 to β4 and notice that our parameter estimates do in-
deed reflect the correct signs. Moreover, note that the parameter estimate for “ethnicity”,
where “African American” is the index of choice is also negative. This fact reflects the
rather sad reality that African Americans were, and continue to be, underpaid.

Now, turn to the magnitude of the parameter estimates. How do we interpret them?
Unlike in simply linear regression models, here we have a quasi log linear regression
where the dependent variable is log-transformed, while the independent variables are in
their natural or raw form. It turns out that when the regressand is log-transformed and
the regressors are in raw form, a unit change in the regressor reflects as a percent change
in the regressand. To see this, consider the following relationships:
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log(y(x)) = a+ bx

log(y(x+ 1)) = a+ b(x+ 1)

Now, consider subtracting the two equations above:

log(y(x+ 1))− log(y(x)) = b

log(
y(x+ 1)

y(x)
) = b

log(1 +
y(x+ 1)− y(x)

y(x)
) = b

log(1 +
∆y(x)

y(x)
) ≈ ∆y(x)

y(x)
= b

However, recall that ∆y(x)
y(x)

is really an expression for the percentage change. Thus, we see
that a one unit change in x is reflected as a b% change in y.

Now, turning to our wage model, we see that the return to education is approximately
8.57%. We also see that a 1 year increase in employment experience is reflected as a 7.75%
change in wage. More shockingly, however, we see that if you are of African-American
ethnicity, your wage will be 24.34% smaller than your Caucasian counterpart!

6.4 Dummy Variables

The last point above leads to a discussion of dummy variables - variables which are en-
coded with factors which indicate the presence of some categorical effect. In particular,
studying the presence of “ethnicity” in the regression above we see that only one of the
categorical effects shows up - the indicator for “afam” or, “African American”. The param-
eter estimate for the latter variable then estimates the difference in intercepts between
“African American” and “Caucasian”. This type of analysis is known as a “treatment
contrast”. That is, the treatment category “afam” is being contrasted with the reference
group “cauc”. Although R handles factors and contrasts automatically, what factor is
chosen as the default can be changed using the ’contrasts() function.

Looking back at our regression, suppose that we wanted to code “cauc” as the default
factor and not “afam”. First, let’s see how R codes the factors in the first place. To see
this issue the following command:

> contrasts(ethnicity)

From this we see that “afam” has been coded as 1 and “cauc” has been coded as 0. This
makes “cauc” the reference category and “afam” as the treatment effect. But if we wanted
to do it the other way around, we could have issued the following command:
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> contrasts(ethnicity) = c(1,0)
> contrasts(ethnicity)

And as promised, “cauc” has now been coded as the treatment effect and “afam” as the
reference category.

Let us now run a regression using the “region” variable. However, before doing so let us
change the reference category from “north east” to “south”. We have already seen how
this can be done using the contrasts() command. Here, we introduce a new command
which simply changes the reference category as follows:

> relevel(region, ref = "south")

Finally, run the following regression:

> cpsint = lm(log(wage) ˜ experience + I(experience∧2) + education +
ethnicity + region)

6.4.1 Factor Interactions

One of the most interesting results to come out of the Mincer wage regression we per-
formed earlier is the difference in wages between white and black males. Here we would
like to continue along these lines and explore a much more complicated line of models
in which we allow for factor interactions. Thus, instead of looking at just differences in
intercepts, we are now able to look at intercept differences in addition to differences in
slope as well.

The two most important commands which deal with interactions in R are : and *. The
former is essentially the operator which multiplies a factor variable with another variable.
The latter on the other hand does the same thing but also includes main effects. For ex-
ample, suppose that a is a factor and x is another variable, possibly a factor as well. Then:

> y ˜ a*x = a + x + a:x
When we included “ethnicity” into our model we were only looking at differences in in-
tercepts. Now, we will be able to look at differences in slopes in addition to differences
in means. So, let us run the following regression:

> cpsint = lm(log(wage)˜experience + I(experience∧2) + education*ethnicity)
> summary(cpsint)

So how do we interpret this regression? Well, we can think of education*ethnicity
as really expending to 1 + education + ethnicity + education:ethnicity. In
this case then, the constant is the intercept for whites, the coefficient associated with
“education” is the slope of “education” for whites, the coefficient on “ethnicity” represents
the difference in intercepts, and finally, the coefficient on “education:ethnicity” represents
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the difference in slopes. To see this it is useful to break down the model by considering
each individual value the factor can in fact take on, which in our concrete case is 1 and
0.

To start, consider the theoretical structure of the model “cpsint”:

log(wage) = α + experienceβ1 + experience2β2 + educationβ3 + ethnicityβ4

+ education : ethnicityβ5 + ε (18)

Now consider the case when ethnicity = 0. When this is true, the model (18) above
becomes:

log(wage) = α + experienceβ1 + experience2β2 + educationβ3 + ε (19)

Next, consider the case when ethnicity = 1. Under this restriction, the model (18) above
becomes:

log(wage) = α + experienceβ1 + experience2β2 + educationβ3 + β4 + educationβ5 + ε

= (α + β4) + experienceβ1 + experience2β2 + education(β3 + β5) + ε (20)

Thus, if we compare model (19) and (20), we see that that the difference in their intercepts
is:

∆intercept = α + β4 − α = β4 (21)

Moreover, the difference in the slopes of education is:

∆slopeeducation = β3 + β5 − β3 = β5 (22)

In other words, when we run the original model (18), the parameter estimate β̂4 estimates
the difference in intercepts while the estimate β̂5 estimates the differences in the slope of
the variable “education”.
In our concrete case, the regression output is really telling us that blacks are on average
earning 12.3% less than whites in addition to saying that for each year of additional
education, a black male will have a wage increase which is 1% less than a white male for
the same level of education. Sad indeed!

6.5 Hypothesis Testing (Goodness of Fit)

Let us now switch gears and return to one of the most typical questions one asks when
performing regression analysis: whether a particular parameter or a group parameters
collectively equal an imposed value. Alternatively, one could also ask whether the inclu-
sion or exclusion of certain regressors will explain data more accurately. The practice of
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answering the first question is known as hypothesis testing. The practice of answering the
second question is known as goodness of fit testing. For example, we can ask the following
question: is “ethnicity” statistically relevant? If we are in the hypothesis testing mindset,
we are really asking whether the parameter associated with “ethnicity” is equal to zero.
In the goodness of fit testing framework, this same question is asking whether the model
which includes “ethnicity” is better at explaining wages than the model excluding it. Al-
though in certain cases the procedures are identical, the concepts are distinct.

Before answering both types of questions, let us first introduce some formalism and in-
sight which we will use throughout the rest of these notes.

6.5.1 Frisch-Waugh-Lovell (FWL) Theorem

Consider a typical OLS framework and a regression model of the form:

y = Xβ + ε = X1β1 +X2β2 + ε (23)

Above we partition the entire set of k regressors X into two distinct groups of size k1 and
k2 such that k = k1 + k2. That is, set X = [X1, X2]. Now, consider the model:

M2y = M2X1β1 +M2ε (24)

Theorem 1 (Frisch-Waugh-Lovell Theorem). If β̂1 is the OLS estimate of β1 from model
(23), and β̃1 is the OLS estimate of β1 from model (24), then:

• β̂1 = β̃1.

• Residuals from (23) = residuals from (24).

6.5.2 z-Statistic and t-Statistic

Consider a typical OLS framework and a regression model of the form:

y = α +X1β1 + . . .+Xkβk + ε, ε ∼ IID(0, σ2) (25)

To test the hypothesis that a scalar estimated parameter β̂i is equal to some specified
value β0i in model (25), we, derive the z-statistic as follows:

z =
β̂i − β0i

V (β̂i)1/2
(26)

We know from the FWL Theorem that estimating β̂i from model (25) is equivalent to
estimating the following model:
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M−iy = M−iXiβi +M−iε (27)

In particular, the estimate of βi obtained from the above model is β̂i = (X>i M−iXi)
−1X>i M−iy.

Moreover, we also know that V (β̂i) = σ2(X>i M−iXi)
−1. Accordingly, we can proceed to

form the z-statistic as follows:

z =
(X>i M−iXi)

−1X>i M−iy − β0i

(X>i M−iXi)−1/2

=
(X>i M−iXi)

−1X>i M−iε

σ(X>i M−iXi)−1/2
(28)

If we now assume that ε ∼ NID(0, σ2I) we know that the above tends to a N(0, 1)
distribution. Notice however that this result depends heavily on the assumption that we
actually know σ. In fact, if we have no knowledge of σ and must therefore estimate it,
the result is very different.

Consider now the much more realistic situation where we must estimate σ2. Suppose fur-
thermore that we are estimating σ2 by its unbiased estimator s2 = 1

T−k
∑T

i=1M−iε
2. In

this case the statistic obtained by replacing σ by s is distributed as t(1), the t-distribution
with one degree of freedom.

So what’s the relationship between these two statistics? Well, it turns out that through a
property known as consistency, the estimator s tends to the true value σ, asymptotically.
This means that as the sample size grows larger and larger, the difference between s and
σ becomes smaller and smaller. As a result, we have what is known as a final sample
test statistic. Practically what this means is that if we are not prepared to abstract our
problem to the asymptotic scenario where we are assuming a very large sample size, we
should always use a t-statistic to perform our hypothesis tests. This is further supported
by the well known fact that a t-statistic tends in the limit to the standard normal distri-
bution.

So what happens then if we are not prepared to assume normality of the errors and in
fact impose the much more general assumption that ε ∼ IID(0, σ2) in addition to not
knowing σ? In this case, the situation is very different again. In fact, under this much
more realistic scenario, by a central limit theorem (CLT), our test statistic is now only
asymptotically distributed as a Student’s t-statistic with one degree of freedom. Note
that this contrasts the result where the same statistic was t(1) in finite samples.

6.5.3 Wald Statistic and F Statistic

Often we are interested in testing several restrictions simultaneously rather than just
one. In this case the intuitive relationships obtained in the previous subsection carry
over albeit with different results. Let us again impose normality on our regression errors
and consider first the problem of testing several arbitrary linear hypotheses. We saw how
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this can be done in Section 5.4 using the linearHypothesis() function, however, the
approach we are about to discuss here is theoretically justifiable.

As in section 5.4 we look here at generalized linear hypotheses of the form Rβ = r, where
R is a qxk matrix and β is kx1. As it turns out, this construction lies at the heart of the
Wald statistic which we now define as:

W = (Rβ̂ − r)′[RV {β̂}R′]−1(Rβ̂ − r) (29)

It is a well known fact that W is asymptotically distributed as a χ2
q. To gain a better

understanding of why this is so, start by noting that:

E{Rβ} = r and V {Rβ} = RV {β}R′

Next, note that because β̂ is an unbiased estimator of β, we can also conclude that:

E{Rβ̂} = r and V {Rβ̂} = RV {β̂}R′

Because we have made the assumption that the regression errors are Normally distributed,
we can conclude that Rβ̂ follows the Normal distribution with with mean r and variance
RV {β}R′. This fact implies that:

[RV {β̂}R′]−1/2(Rβ̂ − r) ∼a N(0, Iq) (30)

Moreover, because we have assumed that our errors are IID we can also claim that the
left hand side (LHS) of (30) is distributed as a multivariate standard normal variable
with components which are mutually independent. In turn, this implies that the right
hand side (RHS) of (29) is in fact a sum of q independent squared standard normal
variables. However, because this is precisely the definition of a chi-squared distribution
with q degrees of freedom, we conclude:

W ∼a χ2
q

The most important thing to note about the above result is the fact that it depends
crucially on the assumption that ε ∼ NID(0, σ2I). That is, if we had not imposed as-
sumption that the errors are Normally distributed then the Wald-statistic above would
not be distributed as a Chi-squared distributed in finite samples. Luckily, we can obtain
a weaker but similar result if we are prepared to retain the independence assumption. In
this case, we can use a central limit theorem (CLT) to show that the Wald statistic as
we’ve defined it above is asymptotically Chi-squared with q degrees of freedom. This is
in fact an analogous result to the one we obtained above for the t-statistic.
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Note further that implicit in the above result is the idea that we know the true value σ.
In practice this is rarely known a priori. Consequently, we are forced to substitute for σ
its unbiased estimate s. When we do this we are no longer able to use the Wald-statistic
and must rely on a result which tells us that:

F ≡ W/q ∼a F (q, n− k)

In other words, what results is the F-statistic which follows the F distribution with q
and n − k degrees of freedom. Moreover, following the same argument which tells us
that as the sample size n tends to infinity the t-statistic tends to the z-statistic, we can
conclude that as the sample size tends to infinity the F-statistic tends to the Chi-squared
distribution. In other words, if it is not sensible to assume that our sample size is large
enough, we should really be using the F-statistic to test linear hypotheses.

6.5.4 Model Selection

A concept which is related to but ultimately different from hypothesis testing on parame-
ters is model selection. Here, we are not so much interested in looking at testing whether
a particular parameter equals some value, but rather whether a particular model is a
better fit to the data than another by including or excluding regressors. To see how this
may arise, let us begin by looking at the model which has been partitioned into two sets
of regressors. That is, we suppose we have k regressors X = (Z1, Z2) which we partition
into two categories of k1 regressors Z1 and k2 regressors Z2 s.t. k1 + k2 = k.

y = Xβ + ε

= Z1β + Z2γ + ε

Next let us pose the following question: is the model which excludes the second group of
regressors a better fit for our data than the mode which includes them? In other words,
we are testing the very general hypothesis of the form:

H0 : y = Z1β + ε

H1 : y = Z1β + Z2γ + ε

This type of hypothesis is tested by constructing the F-statistic as follows:

F0 =
(SSR0 − SSR1)/(df0 − df1)

SSR1/df1

=
(SSR0 − SSR1)/k2

SSR1/(n− k)

Above, SSR0 is the sum of squared residuals from the null model and SSR1 is the sum
of squared residuals from the alternative model. Moreover, df0 and df1 are the degrees
of freedom from the null and alternate hypotheses respectively. More importantly, the
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above construction implies that when F0 is large, we reject the null hypothesis and accept
the alternative hypothesis. Alternatively, when F0 is small, we accept the null hypothesis
and reject the alternative hypothesis.

The intuition behind the above statements lies in studying what the sum of squared
residuals really imply. First of all, the sum of squared residuals are really the sample
analogues of the theoretical variances of the error terms, ε. Secondly, note that adding
more and more regressors to a linear regression model reduces the sum of squared residu-
als. This is a rather logical conclusion considering that if one includes every single piece
of information in the universe, one will have a perfect model with variance zero! However,
this defeats the purpose of having a model. Considering this fact, we immediately realize
that SSR0 will always be greater than SSR1; in other words, the numerator of the F0

statistic will always be positive.

So what? Well, realize that if the numerator is very large, it means that SSR0 is much
larger than SSR1. But this means that variances of the residuals in the null model are
significantly larger than the variances of the residuals in the alternative model. However,
this implies that the fitted values in the null model explain far less of y than the fitted
values in the alternative model. As a result, we conclude that the null model is a worse
descriptor of y than the alternative model and so we reject H0. Arguing the opposite
then leads to the conclusion that when F0 is small, we accept the null model.

So how big is big? Well, it can be shown that under the null hypothesis, F0 is distributed
as F (k2, n−k); that is an F distribution with k2 and n−k degrees of freedom. Using this
fact, we can now judge what is big or small by using F0 to compute the relevant p-values.

6.5.5 Relations to ANOVA

It turns out that ANOVA precisely uses the method in the previous subsection to derive
its conclusions. To see this, we can issue the anova() command and provide as argu-
ments the models we wish to compare. anova() will then compare the models in the
order they are listed. Let us look at an example by asking whether the exclusion of the
variable “ethnicity” provides a better fit to log(wage). To do this, run the regression
which excludes “ethinicity” as follows:

> anova(cps.noethn.lm, cps.lm)

From the output we see that anova() provides F statistics. The latter are computed pre-
cisely in the way discussed above. Moreover, we see immediately that the critical value
of the F statistic provided is the square of the critical value of the t statistic provided
in the original model which tests the hypothesis that the parameter corresponding to
“ethnicity” is zero. This is because we were testing two models which only differ in the
exclusion of one regressor.

In fact, if we want to compare three nested models of the following construction:
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log(wage) = β0 + experienceβ1 + experience2β2

log(wage) = β0 + experienceβ1 + experience2β2 + educationβ3

log(wage) = β0 + experienceβ1 + experience2β2 + educationβ3 + ethnicityβ4

We have to estimate the first model since we have the latter two estimated already.

> cps.noeth.noed.lm = lm(log(wage) ˜ experience + I(experience∧2))
Now we can run anova() as follows:

> anova(cps.noeth.noed.lm, cps.noeth.lm, cps.lm)

The above then compares the first model to the second and the second model to the
third. Had we provided more models, they would have been compared in the order pro-
vided. On this note, it is worthy to mention that if we had issued only one model in
anova(), it will sequentially compare the base model consisting only of a constant, to a
model consisting of a constant and experience. The latter will then be compared to the
models which adds the square of experience, and so on until all regressors are represented.

So what’s the point? Well, the procedure allows us to see which regressors are statisti-
cally significant and which should be included in the model. In other words, it allows us
to perform a very basic model fit analysis and see recursively which regressors ought to
be kept and which discarded.

7 Model Diagnostics
Regression results are driven by the assumptions imposed on various aspects of the model,
in particular the error terms. In this section we would like to delve into this subject mat-
ter by studying ways in which we can test our models to see whether or not they satisfy
the assumptions we’ve made on the theoretical level.

Let us now load a new data set. Here we will load and attach the data set “PublicSchools”.
This data set provides the per capita expenditure on public schools for all 50 US states,
in addition to providing per capita income for said states in the year 1979.

> detach(CPS1988)
> data("PublicSchools")

Before moving forward, let us first take a look at our data set.

> summary(PublicSchools)

The first thing we should notice is that we have a missing value labeled “NA”. Further
exploration will reveal this only affects Wisconsin where expenditure is not available.
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Thus, in order to avoid using this point, let us remap our data set as follows:

> ps = na.omit(PublicSchools)
> attach(ps)

Now, let us plot a graph of this data so that we may have a better idea of what is going
on. Here we will also plot the regression line as well.

> pslm = lm(Expenditure ˜ Income)
> plot(Expenditure ˜ Income)
> abline(pslm)

Now, let us identify some of the states which may be interesting:

> id = c(2,24,48)
> text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE)
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It can be seen from the graph that expenditure increases with income. However, there
are three points which seem very odd, namely Mississippi, Washington DC, and Alaska.
Let us now explore these points further by looking at some more graphs.

> plot(pslm, which = 1:6)

We will now go through these graphs and try and decipher what they are trying to tell us.
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7.0.6 Residulas vs Fitted Values

This first graph is a graph of the residuals vs fitted values. This is particularly useful in
studying the assumption that E{ε|X} = 0. Looking at the graph then, we see that our
model is indeed poorly specified. The residuals are not really zero in expectation and
there seems to be substantial variation in them. This indicates that our model violates
our assumption of IID errors.
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7.0.7 The QQ Plot

The QQ plot allows us to visualize whether or not our residuals satisfy the assumption
of normality. All of the test statistics presented in the regression outputs are based on
the assumption that the error terms are Normally IID. Thus, it is important for us to
check whether Normality is actually satisfied. This plot allows us to do this by comparing
the theoretical quantiles of the standard Normal distribution to the empirical quantiles
of the residuals. The latter are obtained by simply ordering the residuals from smallest
to the largest. If it then happens that the ordered residuals fall on the same line as
the theoretical quantile line, we may be fairly certain that our residuals are normally
distribute. In other words, the quantiles of a distribution can be thought of its DNA. If
the DNAs line up, then we have the same type of species. It seems from our graph that
the residuals are not violating normality all that much, but the presence of the upper
right outlier merits further testing.
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7.0.8 The Scale-Location Plot

This graph allows us to study whether or not the residuals actually have a constant
spread. Thus, if we see trends in this graph we can be pretty sure that our model
violates the assumption that our errors have constant variance. Looking at our graph,
this assumption is violated indeed!
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7.0.9 Cook’s Distance

Cook’s distance measures the effect on the regression line if one was to delete a given
observation. As a result, observations with a high Cook’s distance should be looked at
more closely since they are probably outliers. The intuition is that if a point is like
the majority of the points in the data set, then excluding it from the regression will
have a very slight influence on the regression line. Thus, we see here that Alaska has a
substantial impact on the regression line. Moreover, the impact of the point corresponding
to Washington DC is not to be discounted either.
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7.0.10 The Residuals vs. Leverage Plot

This graph tells gives us an indication of how influential certain observations are. Thus,
if any point is far away from the bunch, we can deem whether it is an outlier, and if
it is, how much influence does it exert over the regression line. Clearly, Alaska has a
substantial influence on the slope of the regression line. Moreover, this graph also shows
us Cook’s distance. Thus, we may judge visually whether a certain point is going to
have high influence over the regression line by looking at whether it crosses any Cook’s
distance boundaries.
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7.1 Leverage

We know that the variance of the residuals is V ar{ε̂|X} = σ2M = σ2(I − P ). Thus, we
know that the variance of the ith residual is given by V ar{ε̂i|X} = σ2(1− hii) where hii
is the ith diagonal element of P . Accordingly, observations with high hii will correspond
to small variances of the ith residual. As a result, the residuals for such a will be close
to zero. It is for this reason that hii is said to be a measure of the leverage of the ith
observation. The reason for this is that hii corresponds to the x co-ordinate of a point.
Thus, if this point is very far to the left or right of the majority of points, then it has the
potential to be very influential in changing the slope of the regression line. This is what is
meant by leverage. Accordingly, we have two situations, points with high leverage hii and
unusually high yi. These points are considered bad and will change the regression line.
The other points are those with high hii but typical yi. These points are actually good
as they do not change the regression slope and still contribute by reducing the variance.

So what is considered high here? Well, usually high is taken to be two or three times the
average element on the diagonal P . Thus, two or three times k/n as k is the trace of P .
Thus, consider the following graph:

> pshat = hatvalues(pslm)
> plot(pshat)
> abline(h = c(1, 3) * mean(pshat), col = 2)
> id = which(pshat > 3 * mean(pshat))
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> text(id, pshat[id], rownames(ps)[id], pos = 1, xpd = TRUE)
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Clearly then, given the standards we’ve imposed, Alaska and Washington DC are deemed
to have high leverage.

7.1.1 Influence

Now that we’ve looked at leverage, it is time to see whether any of our points with high
leverage actually exert influence over the regression line. This will determine if they are
bad leverage points. To do this, we have to ask ourselves the following question: what will
happen to the regression line if one of the points with high leverage was taken out? If the
change in the regression line is substantial, then we may deem the point to be influential.
There are several measures for this and we list them below using the subscript (i) to
denote having removed observation i from the sample:

dffiti = ŷi − ŷi(i)
dfbeta = β̂ − β̂(i)

covratioi =
det(σ2

(i)(X
>
(i)X(i))

−1)

det(σ2(X>X)−1)

D2
i =

(ŷ − ŷ(i))
>(ŷ − ŷ(i))

kσ̂2
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The above quantities should be self explanatory. However, it should be mentioned that
the last quantity above is the celebrated Cook’s distance. Moreover, even though we
can compute these quantities ourselves, luckily, R already has a function built in for this
through the command influence.measures(). Thus, let us issue this command and
look at the output.

> influence.measures(pslm)

Now, we know that the two points which we’ve deemed to have high leverage are Alaska
and Washington DC. To remind you how we saw this, issue the command:

> which(pshat > 3 * mean(pshat))

However, if we want to have a more formal overview of the points deemed to be influen-
tial, we can use the following command:

> summary(influence.measures(pslm))

It is clear that Alaska is the culprit in every single measure and so it is evident that it is
an influential point. In fact, so is Washington, but not as substantially. Let us now see
further how this looks in a graph when we exclude these two points deemed influential
by R.

> plot(Expenditure ˜ Income)
> abline(pslm)
> id = which(apply(influence.measures(pslm)$is.inf, 1, any))
> text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE)
> psnoinf = lm(Expenditure ˜ Income, data = ps[-id,])
> abline(psnoinf, lty = 2)
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It is evident that the regression line excluding the influential points provides a better fit
to the data.

Mirza Trokic 58 R: An Econometrician’s Guide


