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Chapter 10

Introduction to sampling and
sampling distributions

We look at samples of data in order to learn about something, usually about
something more than the sample itself. Typically we are hoping to find out about
a set with many members, such that it is impossible to look at every member of
the set. For example, conservation officials interested in the question of whether a
license should be required to fish on a certain lake might investigate whether fishing
is reducing the average size of fish by taking away relatively more of the mature fish
(perhaps of a specific species). They might catch, weigh and return to the water a

certain number of fish, and repeat the exercise every year for some years. (In order
to judge whether any differences they see over time are genuine, as opposed to being
simply the result of random differences in which fish they catch, they would want to
apply methods for statistical inference described in chapters below.) In this case, it
is clear that they are intending to learn about the entire population of fish in the lake
from their sample of fish. A pollster who asks a sample of people how they intend to
vote in the coming election is hoping to be able to predict the outcome of the election,
which requires learning about the voting intentions of those who will actually vote.
Note that the intentions of people who are not going to vote are irrelevant to the
outcome, and so are not of concern to the pollster: the population of interest as those
who are actually going to cast a vote, so that even in this case there is some subtlety
to the question of what the relevant population is.

Sometimes it is less clear what population we can learn about. For example, we
might survey a group of workers in a particular company in Toronto to determine
whether those who undertook a training program benefited through relatively higher
wages, promotions, and so on. But who are we learning about? If the results apply
only to these workers and to this company, then they might not be of much interest
to anyone else, and we might even be able to speak with every employee at the
company if it is small enough, so that sampling would not be necessary. Would
the results apply to any worker, anywhere, who undertakes training? This seems
unlikely, given the diversity of the workforce and the conditions of work around the
world. We might conclude, however, that the results could provide a good indicator
of the likely benefits of a particular type of training program for North American
workers in a certain kind of industry (so that this is the population being studied),
for as long as certain general conditions remain in place. In any event, determining
what population we are learning about requires some thought.

Once we are clear about what the population being studied is, we want to know
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how the quantities to be obtained from the sample are related to the true character-
istics of the population that are of interest to us. They will not of course be identical
in general, but we hope that they will be close and will tend to get closer as we take
larger and larger samples. The purpose of this and the following chapters is to char-
acterize what is known about the relation between sample quantities and population
quantities: since we learn about the population quantity from the sample, we need
to understand how close it is likely to be in different circumstances, and how great
the probabilities are of making errors of different magnitudes.

10.1 Sample and population

D10.1 Sample: A sample is a subset of a population that can be observed by an
investigator.

The aim in sampling is to obtain a sample which is representative of the popu-
lation. For example, we might be interested in how the vote will go in the upcoming
(at the time of writing) referendum on Scottish independence. If we sample the pop-
ulation in Scotland by setting up a booth on campus at the University of Edinburgh,
then almost everyone we asked will either be a university student or have a degree,
will have above average (expected lifetime) income, and so on. We will not be learn-
ing the views of the poor, chronically unemployed, rural or elderly voters. Unless
university students and staff happen by coincidence to have the same distribution
of views as the general population, we will get a misleading view of overall voting
intentions.

Normally we would prefer a ‘random’ sample of the entire population.

D10.2 Simple random sample: A simple random sample is a sample from a population
such that every member of the population is equally likely to be chosen for the sample,
and successive observations in the sample are independent.

Note that this definition of ‘random’ is somewhat different from what might be
used in other contexts in statistics; for example a random stochastic process is one
which is not fully predictable, but may have some predictable part.

In some cases, it is difficult to achieve the goal of a random sample, because
some members of the population are more difficult to observe, or less likely to be
observed by simple methods, than others. Researchers may therefore sometimes use
a ‘stratified sample’. A stratified sample is one in which the population is divided into
mutually exclusive and exhaustive classes, and the final sample is designed to have
the same proportion of each class as does the population. Simple random sampling
may be used within each class, with the goal of obtaining an overall sample which is
representative of the population.

For example, we may have 8% of a particular population which is elderly (let’s

say, 70 or over). If we try to sample randomly from the population, however, we
may find that we are getting in touch with elderly people less often, either because
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they are less likely to answer the phone, or come to the door, or be contacted by
whatever other means we are using; perhaps we would only end up with 3% of our
sample being elderly people; if their behaviour patterns are different in a way that
is relevant to what we are investigating, our results would be misleading. We might
therefore continue sampling only elderly people until we have enough to make up 8%
of the overall sample. The goal remains to obtain a sample which is representative
of the entire population.

When we have a sample, we will want to use it to learn about some characteristic
of the population. Often, we will start by estimating the mean of some characteristic
in the population, for example, the mean weight of fish in a lake. But we know
that the mean weight in our sample will not, except by outrageous coincidence, be
the same to the nearest gram as in the population. So what does the mean on the
sample tell us about the population mean? We can hope that they are close, but
that is not very useful. In order to answer the question well, we would like to be able
to characterize the entire distribution of the sample mean, given some population
mean and size of sample. If the mean weight of a trout in the lake is 746 grams,
and if we catch, measure and release a sample of 100 trout, what is the distribution
of possible sample means that we could find? We can answer this question, at least
approximately (and with an approximation error that declines to zero as sample size

increases) in a very wide variety of cases. Once we do, we can make valid statements

about where the population mean (not just the sample mean) lies. This in turn
might allow us to compare different lakes, and draw legitimate conclusions about, for
example, whether the fish are on average bigger in one than in the other.

10.2 Sampling and distributions of samples

We can begin with a simple example that we have seen earlier, in which we can
compute the exact distribution of the sample mean, to help us understand what we
are trying to obtain and how to interpret it.

Consider a simple game played by two people. A flips a fair coin (the probability

of a head = the probability a tail = 0.5) and pays $1 to B if the coin comes up heads,

and receives $1 from B if the coin comes up tails. Clearly, each person is a symmetric
position, and has the same probability of being a winner, loser, or breaking even after
playing N times. The population mean payoff to each player is -1(0.5) + 1(0.5) = 0,
regardless of the number of times a game is played.

The sample mean– that is, the average of what is won or lost–may of course
differ. If they play three times, A’s possible outcomes are {−3,−1, 1, 3} and the

sample mean outcomes are {−1,−1/3, 1/3, 1}, and the same is of course true for B.
These outcomes are not equally likely, of course, and we have seen that the proba-
bilities can be computed in various ways. The probabilities of the four outcomes are
{1/8, 3/8, 3/8, 1/8}. Notice that because the number of rounds is odd, it’s actually
impossible to break even exactly, so it’s impossible for the sample mean to equal the
population mean in this case. Nonetheless, although zero is not a possible outcome,
the mean of the sampling distribution is zero, just as the mean of the population
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distribution is zero.
This is the sampling distribution of the mean payoff after playing the game three

times, and it fully describes what outcomes could emerge for the mean and what their
probabilities are, given the conditions of the game.

If we were to repeat this exercise for a game of, say, 10 rounds, the distribution
would be different, although still centered on zero. With 10 rounds, the probabilities
would be more heavily clustered near zero, and we could compute them exactly

using the binomial distribution.1 As we have seen in earlier chapters, once we have
the distribution we can answer questions such as this: if A and B play the game 10
times, what is the probability that A has a mean loss of greater than 0.25, i.e. a total
loss of more than $2.50? (It’s the sum of the first four probabilities, or 176/1024.)
The sampling distribution allows us to make statements about the probability of the
sample mean lying in different regions, given the population mean. Conversely, given
an observed sample mean, it allows us to make statements about where the true
population mean is likely to lie, in the more usual case where the population mean
is not known.

Now let’s do a much larger exercise, using a computer simulation. We use a
computer random-number generation algorithm to generate pseudo-random variables
from either the Uniform[0,2] distribution or from the Chi-squared distribution with
1 degree of freedom. Both of these distributions have a mean of 1, so the population
mean in both of these experiments is 1.

In each case we take samples of size N from the distribution, and take the mean
of each sample. We do this 100,000 times for each sample size, so that we have
many examples of sample means, and then we can actually estimate the density that
applies to the sample mean. We do that using a kernel density estimator (which is at
present not described in this book, but can be thought of for now as a development
or refinement of the idea of the histogram, producing a smooth curve instead of a set

of bars).2 There are three sample sizes, so that we can observe something about the
way in which the sampling distribution changes as the sample size changes.

Notice that the vertical scales are different: all of these density functions inte-
grate to 1, so that as they become thinner they must become taller as well: that is,
they become more tightly concentrated around the population mean.

1The possible outcomes are {−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10} with corresponding

means {−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1}. The probabilities are

(
1

1024
){1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1}.

2See Silverman (1986) for an exposition.
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Figure 10.2.1
Empirical distributions of sample mean:
U [0, 2] random variables, N=10, 100, 500

Figure 10.2.2
Empirical distributions of sample mean:

χ2
1 random variables, N=10, 100, 500
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The top panel shows results from Uniform random variables. The Uniform dis-
tribution is symmetric, and the sampling distributions are apparently symmetric as

well. In the case of the input data which are χ2
1, shown in the bottom panel, the

sampling distribution for N = 10 is noticeably skewed; in fact if one looks very closely
(compare the heights of the density function around 0.5 and 1.5), a tiny degree of
skewing is visible at N = 100 as well. In the largest sample size, no skewing is visible
to the naked eye.

These results suggest that the distribution of the sample mean tends to become
ever more highly concentrated around the true value as the number of sample points
increases, and also that the distribution of the sample values around the true value
tends toward a single peaked (unimodal) and symmetric distribution as the sample
size increases. Both of these results are borne out by theory, as we shall see later in
Chapter 11.

10.3 A simple, if unrealistic, case

A simple case in which we can work out the exact distribution of the sample
mean is that in which the data actually come from a Normal distribution. Typi-
cally, however, we will observe some feature of the data that makes it impossible that
the data could truly be Normal. For example, the data may be bounded on one or
both sides (the unemployment rate, or the proportion of survey respondents who say

they’ll vote for a particular party, cannot go below zero or above 100%). Alterna-
tively, a simple plot of the histogram of the data set may show substantial skewness.
Nonetheless it’s useful to start by learning about this case, for several reasons:

- the sampling distribution that emerges in more realistic cases, where the data
distribution is unknown, will turn out to be approximately the same as the
distribution that results in this case.

- the Normal-data case will help us to understand the reasons for the use of the
t− distribution in some problems.

- we will gain some understanding, through this and results in the chapter covering
Central Limit Theorems, of the distinction between exact finite-sample results
and asymptotic results.

- the Normal-data case has a direct application in some circumstances, particularly
in computer simulations where the input data are created to have a particular
distribution.

In order to obtain the sampling distribution of the mean from a Normal popu-
lation of data, we need the following result.

Theorem 10.1: (Linear combinations of Normal random variables are Normal.) Let
z1, z2, . . . zN be independent Normal variables each of which has mean 0 and vari-

ance σ2
i . Then the linear combination a1z1 + a2z2 + . . .+ anzN has the distribution

N(0,
∑N
i=1 a

2
iσ

2
i ).
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Proof: See Kendall et al. (1991), example 11.2.

(If the means of the random variables are non-zero, then the mean of the Normal
distribution applying to the linear combination is simply the weighted sum of the

means,
∑N
i=1 aiµi.)

To apply this result to obtain the distribution of the sample mean, note that the

sample mean is a linear combination of the sample data, XN =
∑N
i=1

1
N xi, with the

weight on each data point being the constant 1
N .

Here we are treating the case in which the data are independent samples from

an N(µ, σ2) distribution. The expectation of the sample mean is

E

(
N∑
i=1

1

N
xi

)
=

1

N

N∑
i=1

E(xi) =
1

N
(Nµ) = µ.

So the mean of XN is the same as the mean of the the sample data that are being
averaged, the xi’s. This is not true for the variance; the variance of the sample mean
in this independent sampling case is smaller than the variance of the data: using our
earlier results on the variance of a linear combination,

var

(
N∑
i=1

1

N
xi

)
= var

(
1

N
x1 +

1

N
x2 + . . .+

1

N
xN

)

=

(
N∑
i=1

1

N2
var(xi)

)
=

1

N2

(
N∑
i=1

σ2

)
=
Nσ2

N2
=
σ2

N
.

There are several important points to note and remember about this.

- The variance declines with sample size. That is, as we get more sample points our
estimator has less dispersion, and we have a better and better idea of where the
true value lies. This is reflected in the graphs above, where we see the densities
becoming more tightly concentrated around the true value as the sample size
increases.

- The computation of the variance is very straightforward in this case because there
are no co-variance terms: we have assumed that we have an independent sample.
If the data were correlated, additional terms that appear in the computation of

the variance, and it would be larger than σ2

N ; however, as long as the correlation

between subsequent observations is not perfect, the variance of the sample mean
will still decline as sample information accumulates.

- Putting together the mean and variance of the distribution of the sample mean
with the fact from the theorem that it must have a Normal form, we obtain the

result in this case that XN ∼ N(µ, σ
2

N ).
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- We can standardize the sample mean to obtain a distribution which does not
change with the sample size: subtracting the mean and dividing by the square

root of the variance, we find XN−µ
σ/
√
N
∼ N(0, 1), the standard Normal distribution.

- Multiplying numerator and denominator by the square root of sample size N

in the distribution just given, the result may be rewritten as
√
N
(
XN−µ
σ

)
∼

N(0, 1). This implies that scaling up the discrepancy in the estimate of the
mean by the square root of the sample size leads to a fixed, non-degenerate
distribution. It follows therefore that the discrepancy itself is declining at the
rate of the square root of sample size. This is an example of ‘square root-N’
convergence, which appears in many standard parametric problems.

So the discrepancy between the sample (estimated) and population (true) means,

divided by the standard deviation of the sample mean (we might say: the discrepancy

‘measured in standard deviations’) has a standard Normal distribution. Note that
we write standard deviation rather than standard error, because we are referring to
the population value, σ.

This is what is sometimes called an ‘infeasible’ or ‘non-operational’ statistic. Not
everything on the left-hand side of the expression is observable: we don’t know σ.
Because we usually don’t have this value, we can’t actually compute this statistic.

In practice, we have to replace σ with s, that is, we replace the standard deviation
with the standard error (i.e. sample standard deviation) of the data. Does this change
the sampling distribution?

Given the sampling conditions assumed, s will converge probabilistically to σ in
a sense that we will define precisely in the next chapter. So in large samples, using
‘SE’ for standard error, the sample quantity, and ‘SD’ for standard deviation, the
population quantity:

(XN − µ)

SE(XN )
or

(XN − µ)

s/
√
N

should be very close to
(XN − µ)

SD(XN )
or

(XN − µ)

σ/
√
N

,

and so the former should have a distribution close to N(0, 1). This turns out to be
true.

But in fact, for this case, the exact distribution that applies for any given sample
size N (not just the asymptotic result) has been worked out, and we do not need to

use an approximation.3

Theorem 10.2: (t− distribution.) Let Z be a random variable with the standard

Normal distribution (Z ∼ N(0, 1)) and let W the random variable with the Chi-

squared distribution with r degrees of freedom (W ∼ χ2
r.) Then if Z and W are

3In 1908, by William S. Gosset, 1876-1937. Because Gossett used the pseudonym

Student, the distribution is often called Student’s t− distribution.
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independent, the ratio
Z√
W/r

has the Student’s t− distribution with r degrees of freedom.

Proof: See e.g. Mood et al. (1974), section 4.5.

We will see below that in this case of independent random sampling from Nor-

mal data, the sample variance s2 in fact has a χ2
N−1 distribution, so that the feasible

statistic (XN−µ)
s/
√
N

will be distributed as tN−1. Note again that this result, which gives

an exact distribution applicable to any particular sample size, has been obtained
under the generally-unrealistic assumption that the data that we are sampling them-
selves have a Normal distribution. In more general circumstances were we do not
know this, we will have to rely on an asymptotic approximation to get the distribu-

tion of this feasible statistic, as described in the next chapter.4

10.4 Using a sampling distribution

Consider then a situation in which we have a sample of size N from a population

with known mean µ and variance σ2. What can we deduce from this?
If we take a given population mean, we can answer questions about where the

sample mean is likely to be–what is the probability that it will lie in a certain interval,
for example, or the probability that it will lie more than a certain distance away from
the population mean. If we determine how tightly concentrated the distribution of
the sample mean is around the true meaning for a given sample size, it will be useful
in determining what sample size we need to use to get a given degree of precision.
In practical sampling problems where we have a sample already, we are interested in

the converse: given our estimate of the mean, XN , what is the probability that the
true mean lies in a certain interval?

To answer these questions, let’s manipulate the expressions above, working with
the feasible or operational form of the statistic:

XN − µ
s/
√
N
∼ tN−1.

Since the t− distribution with N − 1 degrees of freedom has a known form,
and the quantiles and so on have been tabulated, we can compute an interval such

4The quantity (XN−µ)
s/
√
N

is distributed as tN−1 under these conditions, and more gen-

erally is asymptotically N(0, 1). These results may appear to conflict, but do not,

because the tN−1 converges in distribution to the N(0, 1) as sample size increases

without bound.
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that the expression on the left-hand side above has a given probability of lying in
that interval. Using the notation qα for the α− quantile of the relevant distribution
(tN−1), we can define the interval such that

P

(
−qα/2 <

XN − µ
s/
√
N

< qα/2

)
= 1− α, (10.a)

where we have used α/2 in each case so that we have a probability qα/2 of the actual

outcome lying outside this interval both above and below the interval, adding up to
a total probability of α outside the interval (1 − α inside the interval). Often, α is

taken to be 5% (0.05), so that the interval spans the interior 95% of the distribution,

leaving 2.5% on both the left and right tails.
When working with the Normal distribution, either to describe the infeasible case

or in using the approximation from asymptotic theory that we will learn in the next
chapter, it is common to use the notation zα/2 to describe the corresponding quantiles

from the Normal. This notation is also sometimes used for the t− distribution.
Let us now manipulate this expression further. Our goal is to get a statement

about where the true mean is likely to lie, when we observe only the sample quantities.

The expression (10.a) above contains XN −µ in the middle: if we know one of these,
we will be able to obtain a statement about the other.

If we perform the same operation on each of the quantities in parentheses, we
will not change the probability: so multiplying through by the denominator of the
expression in the middle, we can obtain

P
(
−qα/2(s/

√
N) < XN − µ < qα/2(s/

√
N)
)

= 1− α.

If we now subtract XN from each of the three terms, we obtain a statement purely
about µ:

P
(
−XN − qα/2(s/

√
N) < −µ < −XN + qα/2(s/

√
N)
)

= 1− α,

and then if we multiply through by -1 (the inequality signs must then be reversed:

for example 5 > 4 > 3 implies that −5 < −4 < −3),

P
(
XN + qα/2(s/

√
N) > µ > XN − qα/2(s/

√
N)
)

= 1− α.

This expression says that the population mean µ lies in the interval XN±qα/2(s/
√
N)

with probability 1 − α. So we have succeeded in obtaining a probability statement
about where the population mean lies, although we only observe the sample. Notice
that as N gets larger, this interval gets narrower: more information produces a more
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precise statement. The bounds are divided by
√
N, so the intervals get narrower at

a rate proportional to the square root of sample size increase.
For the t− distribution with a large number of degrees of freedomN−1 (or for the

standard Normal distribution), qα/2 (or zα/2 in the notation commonly used for the

standard Normal) is approximately 1.96: that is, about 2.5% of the distribution lies

below -1.96, and about 2.5 % of the distribution lies above 1.96.5 So the probability
interval just stated is what lies behind the commonly-remembered result that there
is a 95% probability that the population mean of something will lie within about ±
two standard errors of the sample mean.

To take a numerical example, consider the population of fish in the lake men-
tioned earlier. We catch 100 fish, and find an average weight of 746 g, with a stan-
dard error of 205 g. As usual in real data, a moment’s reflection tells us that these
data could not literally be Normal: weight cannot be negative, so the distribution
is bounded below, unlike the Normal. As we said, knowing that the data are Nor-
mal is generally unrealistic. Let’s go on with this example anyway, because it will
turn out below that the results that we have just stated will turn out to be a good
approximation in a wide range of cases, even though the data are not Normal.

So using the intervals given above, and using q0.025 = 1.96), we have

P
(

746 + 1.96(205/
√

100) > µ > 746− 1.96(205/
√

100)
)

= 0.95

or since 1.96×20.5 = 40.18,

P (786.18 > µ > 705.82) = 0.95.

So, given the conditions assumed to hold in this sampling experiment, we can
be 95% sure that the mean weight of the fish in the lake is between about 706 g and
787 g (rounding to three significant digits). This might be of interest in itself, but
it might also be useful in comparing two lakes. We might measure average weight
of fish in a second lake as 921 g, for example. Are the fish really bigger on average
in lake 2, or are we just seeing sampling variation? As we check more and more fish
in each lake, we can narrow down the intervals for the average weight of each, and
if these intervals become clearly separated, then we would conclude that the fish are
on average heavier (healthier?) in one lake than the other. Alternatively, we might
find that the intervals for the population means in the two lakes overlap even in large
samples, so that we cannot be confident that there is any genuine difference. This
is analogous to a test of the hypothesis that mean weight is the same in each lake.
Below we will study ways to perform these tests precisely.

5The value of qα/2 can be obtained from tables for particular values of the degrees of

freedom, or from a computer program that computes the inverse of the cumulative
distribution function: that is, given a value of the CDF such as 0.99, a program will

calculate the corresponding quantile which gives CDF(qα/2) = 0.99.
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10.5 Simple case continued: distribution of the sample variance

It may seem strange to say that the sample variance has a variance. But of
course an estimate of the population variance of the data, as with any estimate
based on a sample of data, depends upon random elements in the data and has a
distribution. That distribution, and moments of it that exist, can be estimated. In
particular, we can estimate features of it such as the (true, or population) mean of

the sample variance and the (true, or population) variance of the sample variance.
To say this slightly differently, whenever we have an estimate of something we can
try to characterize the moments or distribution of that estimate, for example to get
confidence intervals. The estimate of the variance of a sample of data is just one
example of this: once we’ve estimated the population variance using a sample, we
might want to ask, what are the uncertainty bands for this estimate? To do that,
we’ll need the variance of the estimate, that is, the variance of the sample variance.

This problem has a simple analytic solution in the case where data come from a
Normal distribution. We will work through that now to illustrate the way in which the
calculation can be done in a simple case, and also to illustrate one of the connections

between the Normal distribution and the χ2. To begin, let’s continue down the road
of unrealistic cases for a while, because it will help to clarify several things later.

Consider then that the mean of a random variable X is known. Then on an
independent and identically distributed sample of size N, {x1, x2, . . . xN}, we would

estimate the population variance σ2 = E(X − µ)2 by its sample analogue, σ̃2 =

N−1Σ(xi − µ)2. (Note that we don’t have to use X because we’re considering an

unrealistic case in which we know the mean, µ.)

We can therefore divide both sides of this expression by σ2, to obtain σ̃2

σ2 =

N−1Σ(xi−µ
σ )2.

Now let us assume further that we are dealing with Normally distributed data,

so that for any sample point xi, xi ∼ N(µ, σ2) or (standardizing)
(
xi−µ
σ

)
∼ N(0, 1).

From the result stated earlier that sums of squared independent standard Normal

random variables have χ2 distributions, it follows that

N∑
i=1

(
xi − µ
σ

)2

∼ χ2
N .

Now
∑N
i=1

(
xi−µ
σ

)2
= N

σ2

∑N
i=1

(xi−µ)2
N = N

σ2 σ̃
2. Taking expectations of the first and

last terms, and bearing in mind the fact that the mean of a χ2
N random variable is

N, we have E
[
N σ̃2

σ2

]
= N and so E

[
σ̃2

σ2

]
= 1, or E(σ̃2) = σ2.

Written slightly differently, E
[
σ̃2

σ2

]
= N−1E

[∑
( (xi−µ)2

σ2 )
]

= N−1Nσ
2

σ2 and can-

celling σ2 from both sides of the equality, E(σ̃2) = σ2.
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We therefore have an unbiased estimator of the population variance in this in-
feasible example (infeasible because the estimator uses the value of µ, which is not

known in practice); we can obtain the unbiased estimator of σ2 by taking the sample

analogue of the expression for variance, which is the sample mean of (xi − µ)2, i.e.

(1/N)(xi − µ)2.
When µ is not known, things are not quite as simple. The reason is that, while

substituting X for µ seems straightforward, and although X is indeed an unbiased
estimator of µ, nonetheless this substitution creates a bias in the variance estimator:

(1/N)(xi −X)2 is not an unbiased estimator of σ2 in the way that (1/N)(xi − µ)2

would be if it were available. This point deserves emphasis: substituting an unbiased
estimator of an unknown parameter into an expression which gives another unbiased
estimator when that parameter is known, nonetheless leads to a biased estimator.

In this case the reason, intuitively, is that we are trying to measure the typical

squared deviation of a point from the mean of the distribution. When we use X
to measure that mean of the distribution, our sum of squared deviations comes out

slightly too small, because X is defined to be right in the middle of (at the mean

of) the sample, so that squared deviations of the data points from X tend to add
up to a lower value than squared deviations from µ would: µ is in the middle of the
population, not the sample.

Figure 10.5.1 illustrates this on a small sample of data from a random variable
with a true (population) mean of one, but where the sample mean differs by a degree
that is large enough to be clear visually. Taking the sum of squared deviations to
the red line, the population mean, would by the argument above give on average
the correct value for the variance. The deviations to the yellow dotted line will on
average be smaller, and so the estimate of the variance resulting from taking squared
deviations to that line will tend to be too small. It turns out as we will show in the
appendix that dividing by N − 1 rather than N precisely corrects for this effect, so

that the feasible estimator s2 = (N − 1)−1Σ((xi −X)2) is also unbiased.
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Figure 10.5.1
Population and sample mean on a small random sample with true mean = 1

The formal result is given in Theorem 10.3.

Theorem 10.3: Let {xi}, i = 1, . . . N be a set of N independent draws from a random

variable X which has a Normal distribution with unknown mean and variance (µ, σ2).

Define s2 = (N − 1)−1Σ((xi −X)2). Then E(s2) = σ2 and

(N − 1)
s2

σ2
∼ χ2

N−1.

Proof: See the appendix.

Once we have a known distribution, confidence intervals can be obtained me-
chanically, by manipulating a statement about the probability that some quantity
lies in a given interval. We turn the statement, as we did earlier, into one that di-
rectly concerns the quantity that interests us, by steps that preserve the truth of the
statement. In this case, however, we are dealing with an asymmetric distribution,
and the confidence bounds will lie at unequal distances from the mean.

From the lines above we know that (N − 1) s
2

σ2 ∼ χ2
N−1 gives the distribution of

the sample variance estimator s2 under these restrictive circumstances; note that on

the left-hand side of this expression there is only one random variable, s2. Label the
quantiles of the distribution that leave (α/2)% of the probability in each tail of the

χ2
N−1 distribution as cα/2 and c1−α/2. Then we have

P [cα/2 < (N − 1)
s2

σ2
< c1−α/2] = 1− α.
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Therefore, dividing all terms by (N − 1)s2,

P

[
cα/2

(N − 1)s2
<

1

σ2
<

c1−α/2

(N − 1)s2

]
= 1− α.

We want a statement about σ2, so we will need to invert these terms, bearing in
mind that we will then need to switch the inequalities to keep the statement true;
for example, 5 > 4 > 3⇔ (1/5) < (1/4) < (1/3). Therefore

P

[
(N − 1)s2

cα/2
> σ2 >

(N − 1)s2

c1−α/2

]
= P

[
(N − 1)s2

c1−α/2
< σ2 <

(N − 1)s2

cα/2

]
= 1− α

gives the required (1− α)% confidence interval.
Consider for example a random sample of 210 points, for which the variance is

estimated to be s2 1.234. The relevant distribution is the χ2
209, which can be approx-

imated from tables, or for which quantiles can be obtained computationally. In this
case, c.025 = 170.86 and c.975 = 250.93 from a computer algorithm, and the confi-
dence interval for the true variance is then 209(1.234)/250.93 to 209(1.234)/170.86

or [1.028, 1.509]. Notice that 1.234 is not the middle of this interval; the bounds are
unequal distances from that point.

· · ·

We have said several times that this case is unrealistic, because it assumes that
the data are Normal and moreover that they are known to be Normal. In a typical
problem, we do not know the distribution from which the data come. How then will
we find the distribution that results when we perform some operation such as taking
the sample mean, when we don’t even know the distribution of the input data?

Perhaps surprisingly, it is possible to answer questions under these circum-
stances, using an invariance principle. An invariance principle states that, for any
(input) distribution that has certain characteristics, performing some operation on

the data will tend to produce, as sample size grows, a particular (output) distribution.
The Central Limit Theorem, which we will discuss in the next chapter, is an example
of an invariance principle and states that the distribution of the standardized sample
mean of data that have a few simple characteristics will converge toward the stan-
dard Normal distribution. With this result, it is not necessary to make unfounded
assumptions about the nature of the data that we are analyzing.
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Chapter 11

Laws of Large Numbers and
Central Limit Theorems

Since the distribution of our data is in general unknown, we need statistical
results that do not depend on knowledge of this type. This chapter describes two
general classes of result that allow us to draw conclusions about data of unknown
form, although of course they do require that some conditions hold.

Before describing these general classes of result, laws of large numbers and
central limit theorems, we need to discuss what we mean by convergence in these
stochastic contexts, and provide some formal definitions of concepts that will turn
out to describe types of convergence that can arise. These stochastic convergence
concepts are distinct from deterministic convergence. For example, the sequence{

1
n , n = 1, 2, 3, . . .

}
converges deterministically to zero; for any value of n, we can

state exactly how close to zero the value in the sequence will be. To take another

common example, the limit as the number of terms→∞ of the sum 1+ 1
2+ 1

22 + 1
23 +. . .

is 2. By contrast, in the case of stochastic convergence, we only know that as some
index increases, we will tend to move closer to some limit, in a sense that can be
stated precisely using probabilities.

11.1 Some preliminary asymptotic theory

We begin therefore by defining convergence in probability and convergence in
distribution.

D11.1 Convergence in probability: A sequence of random variables {Xn}n=1,2,... is

said to converge in probability to a value x if

lim
n→∞

P (|Xn − x| < ε) = 1 for any ε > 0.

This is typically denoted either by Xn
p→ x or by plim(Xn) = x; note that the

value x may be a constant, or a random variable. The following graphic provides
an example of a sequence of 1500 observations on a random variable which is con-
verging in probability to a probability limit of one, but sometimes moves closer, and
sometimes moves farther away, from one. We observe that the range of its fluctua-
tions around the probability limit tends to diminish as sample size increases (in this

example, in proportion to the square root of sample size).
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Figure 11.1.1
Example of convergence in probability

N = 1500

We will also often meet with cases in which a random variable is not converging
to any particular value (random or fixed), but instead has a distribution which is
converging to another distribution.

D11.1 Convergence in distribution: A sequence of random variables {Xn}n=1,2,...

which have cumulative distribution functions {Fn(X)}n=1,2,... is said to converge in

distribution to a random variable X which has the cumulative distribution function
F (X) if

lim
n→∞

Fn(X) = F (X)

at all points of continuity of the cumulative distribution function F (X).

This is usually written as Xn
D→X.

An illustration is provided by convergence of the tk (k degrees of freedom) density

to the N(0, 1) as k →∞; recall Figure 9.2.3 of Chapter 9.

11.2 Laws of Large Numbers

One important class of asymptotic result concerns convergence of a sequence of
sample estimates to the true mean of the process.
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Theorem 11.1: (Weak Law of Large Numbers– WLLN). Let {xi}, i = 1, . . . n, be
independent random draws from a distribution with cumulative distribution function

FX(x), such that the distribution has a mean µ and variance σ2 > 0. Then the sample
mean converges in probability to the true mean, such that for any ε > 0,

limn→∞P
[
|X − µ| < ε

]
= 1.

For a finite value of n we can specify a further parameter δ to describe the trade-
off between precision in the interval around µ and our degree of confidence in the

statement. Let ε and δ be such that ε > 0, 0 < δ < 1 and let n > σ2/ε2δ. Then

P
[
|X − µ| < ε

]
≥ 1− δ.

As ε and δ become closer to zero, we are stating a more precise interval and
higher probability of being in that interval. We can choose these parameters in
order to determine which statement we wish to make, constrained by the necessity
that sample size be large enough to make the statement valid (i.e. we must have

n > σ2/ε2δ). The larger is the sample size, the more precise the statement that we
can legitimately make.

11.3 Central Limit Theorems

As we have said, in most cases we do not know the distribution of the data that
we are analyzing. We might therefore expect it to follow that the distributions of
statistics that we compute from these data will also be unknown. However, in many
cases particularly involving sums or averages, the distribution of a statistic can be
approximated well because we have information about convergence in distribution
that applies to be statistic: that is, its finite-sample distribution is unknown, but can
be shown to be converging to a particular distribution F (.). We can therefore take

F (.) as an approximation to the true distribution, which will become increasingly
precise as sample information accumulates.

Central limit theorems are some of the most important and useful results and
statistics, for at least two reasons. First, they apply to sums or means of random vari-
ables (data points), and taking the mean of something is one of the most frequently
applied operations. Recall for example that the moments and functions of moments
that we studied earlier, such as the variance, coefficient of skewness and kurtosis,
are based on expectations. Their sample counterparts are therefore means of some

random variable, such as the sample variance (n− 1)−1
∑n
i=1(xi −X)2, which apart

from the degrees of freedom correction is the sample mean of the random variable

(xi−X)2. A vast set of statistics can be interpreted as sample means of some random
variable.

Second, almost invariably we do not know the true distribution function of our
data. To assume that we know the distribution when we do not can easily lead to
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false statements or results, particularly given that differences between distributions
that may be critical in practice (for example, tail thickness or relative frequency of

extreme events in risk management) can be very difficult to observe precisely in an
empirical sample of data. We cannot calculate important quantities such as tail prob-
abilities by the natural method of integrating under a particular mathematical form
of density function, or directly using the cumulative distribution function, because
these functions are unknown.

A Central Limit Theorem (CLT) gives a result that applies to any input distri-
bution, as long as a few simple conditions are met. In the theorem that we will state
here, these conditions are fairly weak (therefore apply fairly widely), but they can
be weakened further. For this reason there are many CLT’s, as similar results have
been obtained under different assumed conditions on the true process.

Theorem 11.2: (Central Limit Theorem– CLT.) Let {xi}, i = 1, . . . n, the indepen-

dent random draws from a distribution with cumulative distribution function FX(x),

such that the distribution has a mean µ and variance σ2 > 0. Then the standardized
sample mean has a limiting standard Normal distribution: that is,

Xn − µ
σ/
√
n

D→ N(0, 1).

The notation N(0, 1) denotes the Normal distribution with mean zero and vari-
ance one: substituting into the Normal density function

fX(x) = (2πσ2)−
1
2 exp{−1

2

(x− µ)2

σ2
},

the values µ = 0, σ2 = 1, we therefore have that N(0, 1) represents the density

fX(x) = (2π)−
1
2 exp{−1

2
x2}.

(We might find it more natural to do without standardization in Theorem 11.2, and

write Xn − µ
D→ N(0, σ

2

n ) or Xn
D→ N(µ, σ

2

n ). The problem with writing this

is that we would now be talking about convergence to some distribution which isn’t
constant, since its variance is declining with sample size n, and in fact isn’t even well
defined in the limit as the variance would be zero, and we divide by the variance
in the expression for the Normal density. So this representation might look more
natural, but isn’t strictly valid. Therefore the standardization is applied in order to
have a limiting distribution which is non-degenerate.)

Theorem 11.2 could also be written in terms of the sum of the data points

rather than the sample mean, because the sum
∑n
i=1 xi differs from the sample mean
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n−1
∑n
i=1 xi only by the constant factor n : being a constant, this factor does not

affect the shape of the distribution. So multiplying through top and bottom by n in
Theorem 11.2, we have ∑n

i=1 xi − nµ
σ
√
n

D→ N(0, 1).

The next figures illustrate convergence to the Normal. We take data points from
a heavily right-skewed distribution, a typical sample of which is illustrated in Figure

11.3.1.6 Numerous samples are taken from this skewed distribution, and in each one
the mean is computed; the density of the sample mean is then estimated using kernel

smoothing methods, and these densities are illustrated in Figures 11.3.2 and 11.3.3.7

In each of the latter figures, we plot the density of the sample mean, standardized as
in the theorem, for each of three different sample sizes. These six cases are separated
into two figures, because if we placed them all on the same figure, the different widths
and heights of the densities would make it difficult to observe the shapes of each one
(for example,the largest sample size would appear as a thin spike if placed on the

graph with the scale of Figure 11.3.2): note that the horizontal and vertical scales of
the two figures differ. They otherwise have the same meaning.

Figure 11.3.1
Distribution of the input data:

histogram of realizations of a single random sample

6These pseudo-random data are in fact generated from the χ2 distribution.
7We could have used histograms instead, but would give up the smooth curve esti-

mated by the kernel method.
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Figure 11.3.2
Empirical distributions of the sample mean of N realizations:

skewed random variables, sample sizes N=25, 100, 400

Figure 11.3.3
Empirical distributions of the sample mean of N realizations:
skewed random variables, sample sizes N=1000, 4000, 16000

We observe that although this is an asymptotic result, conformity of the mean
with the Normal distribution is quite good even at the smallest sample size, and
there is almost no visible deviation from symmetry remaining. This should not be
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taken to indicate that a CLT is always a good approximation even at a very small
sample size; here we are treating cases of independent random sampling, which is
a relatively straightforward case. Other CLT’s can be proven for data which have
some dependence, but larger sample sizes will typically be required for this degree of
conformity with the asymptotic distribution to appear.

We observe also that as we move to higher and higher sample sizes, the densities
become ever more concentrated around the true mean, in conformity with the WLLN
as well as the CLT. In fact if we take a range containing any given proportion of the
data (for example, imagine marking points on the axes that contain about 99% of the

area under each of these densities), the range required to contain the given proportion
shrinks as the sample size increases– note again the difference in scales between the
two figures. As sample size increases by a factor of four, the range containing the
given proportion of the data shrinks by a factor of about two: that is, our estimates
become more precise at a rate equal to the square root of the rate of increase of
sample size. This is an example of ‘root-N convergence’, which appears frequently in
simple parametric estimation problems such as this, and which can also be read from
the left-hand side of the result in Theorem 11.2: this ratio converges to a constant
distribution, and so the numerator must on average be shrinking at the same rate as
the denominator, which (because σ is a constant) is necessarily shrinking at the rate

of the term that it is divided by,
√
n. This is also a reflection of the result proven

earlier that the variance of the sample mean in an independently and identically

distributed random sample is σ2/n, which means that the standard deviation of the

sample mean is σ/
√
n and is therefore declining in proportion to the square root of

the sample size.

Note again that the existence of first and second moments is needed, and that this
is a condition that can fail, particularly in financial data containing many extremes.
Nonetheless, in most circumstances, the existence of a the first two moments is a safe
assumption.

It is also crucial to remember that a CLT describes the distribution of a statistic
calculated from the data and not the data themselves. Unless data arise from a
process of summing or averaging, a central limit theorem does not provide any reason
to suppose that the raw data should be approximately Normal.

11.4 Application to the distribution of sample proportions

It is straightforward to show that this result applies as well to the distribution of a
proportion. Define a 0/1 variable such that the variable takes the value 1 if a certain
condition holds, 0 otherwise. Let p be the proportion of cases in the population
for which the condition is true. For example, let p represent the proportion of the
population who would vote ‘yes’ to a referendum question, and for every person xi
from that population who is sampled, let the individual be coded as 0 if he or she will
vote ‘no’, and 1 if he or she will vote ‘yes’. The number of people who say that they
will vote ‘yes’ can be denoted by Ny and the sample size by N, so that the sample

proportion p̂ who say that they will vote ‘yes’ is
Ny

N . But
Ny

N is also the mean of
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the 0/1 random variable xi:
1
N

∑N
i=1 xi = 1

N times the number of 1’s in the sample,

which equals
Ny

N .

That is, p̂ is the sample proportion, and is also the sample mean value of a 0/1

dummy variable indicating that the condition (vote ‘yes’ in the referendum) holds.
Therefore results pertaining to a sample mean also apply to p̂.

The variance of the random variable p̂ takes a simple form, since this is a
Bernoulli random variable, and the number of ‘successes’ (here, ‘yes’ votes) has a

binomial distribution. We can work out the variance (or standard deviation) of p̂
as a function of the population value p, so that p is the only unknown value in the
sampling distribution.

Given random sampling from a population with true proportion p,

E(p̂) = E

(
Ny
N

)
=

1

N
(Np) = p,

and

var(p̂) = E(p̂− E(p̂))2 = E(p̂− p)2 =
1

N

N∑
i=1

(xi − p)2 =
1

N

∑
k=0,1

pk(xk − p)2

=
1

N
(p(1− p)2 + (1− p)(−p)2) =

p(1− p)
N

,

where p0 = 1 − p and p1 = p. Note that we obtained the variance here directly
from the probability function: for any given sample point there is a probability p
of obtaining a 1 when the random variable is sampled, in which case xi exceeds the
mean (p) by (1 − p), and a probability (1 − p) of obtaining a 0, in which case the
random variable is below the mean by p. We have used the assumption that the

sample points are independent to write the step E(p̂− p)2 = 1
NE(xi − p)2.

Since the sample proportion is a sample mean of the 0/1 random variables, and
since the mean and variance exist as we have just shown, we therefore can obtain the
asymptotic distribution using Theorem 11.2. Substituting p̂ for the generic expression

X and p for the generic symbol µ, and the standard error of the proportion for the

general expression for the standard deviation of X (that is, σ√
(N

), we have

(p̂− p)√
p(1− p)/n

D→ N(0, 1).

This result can be used to obtain confidence intervals for proportions, as in the
confidence interval computations that we saw in Chapter 10.
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Appendix to Chapter 11

Proof of the weak law of large numbers given above.8

Recall the Markov inequality: let X be a random variable and g(.) a non-negative

function on R such that E(g(X)) exists. Then

P (g(X) ≥ k) ≤ E(g(X))

k
∀k > 0.

As with the proof of the Chebychev inequality given earlier, we make a choice

of function g(X) and of k; here g(x) = (X − µ)2, k = ε2, where µ and σ2 are the

mean and variance of X (i.e. of the data) and ε will be the bound on the discrepancy

between the true (population) mean µ and estimated (sample) mean X. Note that

the function g(X) here contains the sample mean X rather than the value of the
variable itself, X, which occurs in the Chebychev inequality.

We can re-write the statement above in equivalent form as

P (g(X) < k) ≥ 1− E(g(X))

k
∀k > 0.

Making the substitution of our choices for g(X) and k,

P ((X − µ)2 < ε2) ≥ 1− E((X − µ)2)

ε2
∀ε > 0.

Now since we are dealing with a simple case of independently distributed data, we

have E((X − µ)2) = σ2/n, as shown earlier. Therefore

P ((X − µ)2 < ε2) ≥ 1− σ2

nε2
.

Taking square roots of the quantities inside the probability on the left side does not

change the statement, and we will define δ = σ2

nε2 , leaving us with the statement

P (|X − µ| < ε) ≥ 1− δ, (A11.1)

for δ = σ2

nε2 or re-arranging, n = σ2

ε2δ. The statement will remain true for larger δ (if

the probability is ≥ 1 − δ, it is also ≥ 1 − δ′ for δ′ > δ since the latter is a lower

probability). So (A11.1) holds for any n ≥ σ2

ε2δ (integer constraints on sample size

may make it impossible to find an n that makes this hold with equality.)

8This proof is based on that given by Mood et al. (1974).
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Chapter 12

Sampling distributions revisited

In Chapter 10 we saw how we can construct confidence intervals for an estimated
parameter, given knowledge of the distribution of that estimate. In the case is consid-
ered there, we were able to determine that distribution using theoretical results on the
relations between distributions, but only by assuming that we knew the distribution
of the input data. In typical practical cases, we don’t of course know the distribution
of the input data; we obtain in the form of a matrix or table, and set out to analyze
some question of interest. Nothing is in general known about the distribution of any
quantity in the data matrix; we cannot work out these distributions mathematically
without knowledge of the inputs. We therefore need to have ways of approximat-
ing the unknown distributions to an acceptable degree of accuracy. There are two
broad classes of approximation which are commonly used: approximations based on
asymptotic theory, where we take the distribution to which another distribution will
converge asymptotically as its approximation, and simulation-based approximation,
where we use computer-generated random numbers to emulate a problem and at-
tempt to approximate the relevant distributions. Simulation-based methods such as
Monte Carlo tests and bootstrap tests have wide applicability, but require different
forms for different types of problem and therefore requires some sophistication in
their implementation. These simulation-based methods are beyond the scope of this
book, at least at the time of writing. Although therefore we will discuss asymptotic
approximations, it’s worth underlining that simulation-based methods may also be
used in this context, in part to check on the accuracy of asymptotic approximations
in different cases.

In Chapter 11 we saw that we can obtain asymptotic distributions for estimates
in some such cases, using other theoretical results, and in particular central limit
theorems. Without knowing the distribution of the input data, we can determine
nonetheless that the sample mean will have an asymptotically Normal distribution,
given some simple conditions which will often apply. The asymptotic distribution
will not correspond perfectly with the finite-sample distribution, but will provide a
good approximation in a wide range of circumstances.

In the present chapter we will see how to apply central limit theorem results
to obtain confidence intervals for estimators. We will therefore have moved to a
set of methods that allow us to handle the realistic problem in which we begin with
nothing more than a set of numbers of unknown distribution, and compute confidence
intervals for estimates that can be expressed as the mean of something measurable.
This kind of argument is widely applicable, and forms the basis for a great deal of
applied statistical inference, giving approximate confidence intervals with a reliable
justification. After we go through the method in the next section, we’ll step back to
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look at an example where we start with a set of numbers that we know very little
about, and get some confidence intervals for estimates.

12.1 Sampling distributions based on a CLT

Consider the following problem. We want to know whether two random variables
have the same mean, and we have a random sample from each. Let these two random
samples be {xi}ni=1 and {yi}ni=1, and let the means of the underlying random variables

X and Y be µx and µy. If µx = µy then the mean of (X − Y ) is zero, so we can look

at the question by considering the difference X − Y.
We will put a label on X − Y, and call it d for difference. Then we have a

sample {di} = {xi} − {yi} for i = 1, . . . n, and d =
∑n
i=1

(xi−yi)
n . We do not know

the distribution of X,Y or d, but we will make the weak assumption that its mean

and variance exist.9 Then we can get a confidence interval for d from a central limit
theorem: we know

(d− µd)√
σ2
d/n

D→N(0, 1), (12.1)

and that replacing σ2
d with s2d =

∑
(di−d)2

(n−1) leaves this asymptotic distribution result

intact. We can then obtain an approximate (asymptotic) confidence interval for the
true µd using the same manipulations that we saw earlier:

P

(
−zα/2 <

(d− µd)√
s2d/n

< zα/2

)
' 1− α,

which implies P (−zα/2
√
s2d/n < (d− µd) < zα2

√
s2d/n) ' 1− α and so

P (−d− zα/2
√
s2d/n < −µd < −d+ zα/2

√
s2d/n) ' 1− α

which, reversing the inequalities as we change sign, implies

P

(
d+ zα/2

√
s2d/n > µd > d− zα/2

√
s2d/n

)
' 1− α, (12.2)

or that d is in the interval d± zα/2(
√
s2d/n) with probability approximately equal to

1 − α. (Note again that we say ‘approximately’ because this is not a finite-sample-
exact confidence interval as we could obtain if we somehow knew for example that the
original data were Normal. Instead this is an approximation based on the asymptotic
results, which will tend to become more and more accurate as sample size increases.)

9We may know or observe sufficient conditions for this, such as that the two sequences

are bounded, which guarantees the existence of all finite moments.
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We have stated the problem here in the form of a difference between two series,
which is a type of problem that is often interesting (are starting salaries in some job
the same for men and women with the same qualifications? Are accident rates for
first-year drivers the same for those who completed a driver education course and
those who did not?) However the same method can be applied whenever we are
interested in the mean of a random variable with an unknown distribution, as long
as that distribution possesses the first two moments, which will very commonly be
the case and can sometimes be verified unambiguously.

12.2 Example

Consider in more detail the example of the number of accidents that newly

licensed drivers have in their first years of driving.10 Note that this random variable
is discrete (0, 1, 2, . . .) and is bounded on one side. It certainly cannot be Normally
distributed.

We might look at whether the true mean number of accidents per year is some
round number such as 1, for example, but that doesn’t sound very interesting: the
true answer is almost certainly going to be some fraction. A more interesting question
is the male-female difference.

Consider that a driving school tracks data on its students for one year after
licensing. Over a certain period, the school has 422 male graduates and 378 female
graduates.

The numbers are not the same, so we would not simply take the difference
between pairs of students as above. To illustrate a point, however, imagine for a
moment that we have 378 observations on each group. We can then take pairs and
construct the difference di = xi − yi, i = 1, . . . , 378, that is, the difference between
the number of accidents that the male driver has and that the female driver has
in each pair; this can of course be positive, negative or zero in each case. Then, a
confidence interval for the difference exactly fits the pattern above.

While this test would be straightforward, it fails to use all of the available infor-
mation; the additional 44 male drivers are excluded from the sample, and of course
the results of the test will depend upon which 44 drivers are excluded. In general,
sample sizes from two groups may be unequal, and so we would like to be able to
derive a test which does not depend on the assumption of equal sample sizes.

Bearing in mind that the number of accidents in a group can reasonably be
supposed to possess same mean and variance (this would be guaranteed if the number
of accidents is bounded above, for example if access to a vehicle is removed for anyone
who has more than some number of accidents), we will be able to use a central limit
theorem and therefore an asymptotic normal approximation for this problem. Let’s

10We of course need to make a precise definition of the term ‘accident’: for example,
an accident might be defined to be an event leading to damage which is reported to
an insurance company. This definition would exclude many small incidents, which
are not reported because the cost of repair is less than, or not much more than, the

insurance deductible.
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say that the quantity of interest to us is the mean number of accidents for each of
the two groups, male and female drivers in the first year of licensing. (We could
by contrast look at a different quantity such as the probability of having at least
one accident.) The question of interest to us is whether the mean on each of these
groups, µ1 and µ2, is the same, and one way to approach that is to construct a
confidence interval for the difference in the mean number of accidents in the two
groups. We can do that along the lines indicated above, computing d this time as

d1 − d2. The problem now is to compute the standard error of this difference, which
at first sight may look tricky because we do not have a single set of differences and so
cannot compute it directly as the standard error of a particular data series. However,
the quantity that we need can be computed straightforwardly using the expression
for the variance of a linear combination of two random variables X and Y, that is

var(aX + bY ) = a2var(X) + b2var(Y ) + 2ab cov(X,Y ), for weights a and b. Here,

a = 1, b = −1 and it is reasonable to suppose that the covariance is approximately 0.11

We therefore have var(X − Y ) = var(X) + var(Y ). We can compute the estimated

variance s2 for each of the series {xi} and {yj} recording the number of accidents

for each male driver indexed i and each female driver indexed j, and the variances of

the means of the two series are then s2x/nx and s2y/ny. The estimated variance of the

difference is then s2x/nx + s2y/ny and the standard error of the difference sd =
√
s2d

is the square root of that quantity. We can then compute a confidence interval using
the expression (12.2) above.

To illustrate further, here is an example with some numbers computed on a
simulated data set constructed with known probabilities of accidents. The sample
sizes for male and female drivers are 422 and 378, and data series of these lengths
were constructed such that each data point is the number of accidents for that driver,
0, 1 or 2. The data were constructed in such a way that the accident probabilities are

11This is an example of a case in which we may substitute a value for some quantity
based on reasoning about the way the sample is constructed. Here, we might have
samples of male and female drivers who don’t know each other and live in different
places, so that we feel confident that the driving experiences of individuals are inde-
pendent of each other, so that their covariance must be zero. We may also be aware
that this is not a literal truth; for example, imagine that one of the male drivers
and one of the female drivers are a couple who like to send texts to each other, and
drive different cars. If they do this while driving–one of the forms of behavior that
clearly seems to raise accident rates–then they may each have elevated probabilities
of an accident, and may even text each other a while both parties are driving simul-
taneously, so that the male and female accident rate data are no longer independent
and the covariance would be positive. To the extent that this is possible, it seems
likely to be a very small effect, so that in practice we would probably continue to use
the approximation that the covariance between the two series is zero, being aware

nonetheless that this is an approximation and may not be a literal truth.
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not in fact exactly the same (the distribution will be described below). The statistics

computed on the two samples were: µx = 0.4123; µy = 0.3783; s2x = 0.2429; s2y =

0.2358; therefore d = µx−µy = 0.0340; s2µx
= s2x/422 = 5.7556×10−4; s2µy

= s2y/378 =

6.2385×10−4; finally using the expression for the variance of the difference as above,

the standard error of the difference is sd = [s2µx
+ s2µy

]
1
2 = 0.0346. This is quite close

to the difference itself, meaning that the difference is about one standard error away
from zero; clearly therefore we do not have very strong evidence against zero being
the correct value for the difference. The 95% confidence interval for the difference,
using the percentage points of the asymptotic standard Normal distribution, is 0.0340
± 1.96(0.0346) or [-0.0338, 0.1018], so that zero is well inside the interval.

That is, these data do not show clearly that there is any difference in average
number of accidents between male and female drivers, although the sample average
computed is somewhat higher for male drivers. In fact, for this example the data were
generated to be such that male drivers do have a higher mean number of accidents;
why then does the sample not give us a clearer result? Intuitively, it must be because
the sampling variation is large enough to make any difference difficult to discern;
the signal is obscured by noise. We can examine this more clearly by repeating the
experiment many times, to see what happens. It’s possible in this case because these
data were constructed for this example rather than observed empirically, so instead
of constructing one example we are free to construct many, and observe the outcomes
in a large number of similar cases. In the simulations that will be recorded in the
next two density functions, there were 10,000 experiments each with the same sample
sizes of 422 and 378. The value on the lower axis in each of these figures indicates a
male-female difference, and the density indicates how likely it is to observe differences
of that magnitude.

What we see in the first figure (apart from the fact that conformity with the
shape of the asymptotic normal distribution is quite good, as we expect from a central
limit theorem in a case with independent observations) is that the range of outcomes
observed is quite broad, and that although these data are constructed in such a
way that male drivers do have a slightly higher accident rate, samples in which the
difference is zero or negative, that is that on a particular sample the female drivers
had more accidents, are by no means uncommon. Many samples of these sizes,
in other words, would lead to observations where the female drivers have a higher
mean accident rate; the degree of random variation is very substantial relative to the
quantity that we are trying to estimate. In the next example, we do the same thing
but with much larger sample sizes: each of the previous sample sizes is multiplied by
10. We again take 10,000 examples on these larger sample sizes, and plot the density
over each of these 10,000 estimated differences.
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Figure 12.2.1
Distribution of the mean difference in number of accidents,

simulated sample of 422 male and 378 female drivers

Although the shape of the distribution is the same in the second case, we see that

the numbers on the lower axis are less spread out (they’re scaled down by
√

(10), of

course). Now, observing a male-female difference that is near zero or even negative
is quite a rare event; the mean differences about the same, around 0.02, but there
is much less sampling noise on these larger sample sizes and the results are more
reliable in the sense that the estimated difference comes out to be positive, as it in
fact is, over 95% of the time.
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Figure 12.2.2
Distribution of the mean difference in number of accidents,

simulated sample of 4220 male and 3780 female drivers

In our single original example, zero was in the confidence interval. We could
not reliably conclude that the mean difference in accidents between male and female
drivers was a positive number. We now see that with a larger sample from the same
process, we would have concluded that zero is outside even a 95% confidence interval:

a process with a zero difference is unlikely to have generated these data.12

This illustrates a general feature about drawing, or failing to draw, a conclusion
from data: it may well be that we will fail to see a difference between two things
because our sample does not contain enough information (contains too much sam-

pling noise). When therefore we fail to find a clear difference (or in the language of

hypothesis testing that we will soon use, when we fail to reject the null hypothesis), it

does not mean no difference is there (it does not mean that the hypothesis is true). It
could simply be that our data were insufficiently informative to allow us to conclude
that. Failing to show that something is false doesn’t prove that it’s true.

12.3 Why didn’t we use a t− distribution in that example...

...since the variance was estimated?

12Data were generated by independent random draws such that for male drivers, the
probability of no accident was 0.6, of one accident was 0.395, and of two accidents was
0.005. For female drivers, the probability of no accident was 0.65, of one accident was
0.345, and of two accidents was 0.005. Male drivers therefore have higher probability

of at least one accident (0.65 vs 0.60) and higher mean number of accidents.
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This example might also help us to recall that the exact distributional result
for the t− depends on quite strong assumptions about the distribution of the input
data; normally distributed input data would lead to a statistic that has an exact
t− distribution. But that is clearly not the case; the input data are the numbers of
accidents for samples of different people, which are integers with a distribution that
is bounded and skewed right.

All we can rely on to obtain a distribution of the test statistic in this case is a
central limit theorem, which tells us that the mean will have an asymptotic Normal
distribution. If we are relying on our asymptotic approximation from the central
limit theorem, then our asymptotic distribution is a Normal.

Is it wrong therefore to use a t− distribution rather than a Normal to get the
confidence interval, that is to use tk,α/2 for k degrees of freedom, rather than zα/2,

in the confidence interval expression?
Bear in mind that the tk distribution converges to the N(0, 1) as k increases.

In other words, these distributions are asymptotically the same. The size of the
confidence intervals given by each of these distributions will become arbitrarily close
as the sample size increases. For example with a sample size of 60 we have, for
a 95% confidence interval, t60,0.975 = 2.0003 and z.975 = 1.960 if we are using the

standard Normal. The size of the confidence intervals that we obtain will therefore
differ by about 2% (i.e. about 0.040/2). Of course, the distributions differ by greater

percentages as we go farther out into the tails, so that if we wanted a 99% confidence
interval or a 99.99% confidence interval, the percentage difference would be larger.
Nonetheless, all of these differences are declining with sample size; for a sample size
of 400 and a 95% confidence interval, we have t400,0.975 = 1.9659 and of course

z.975 = 1.96 still.
Notice that, although the values are typically close and certainly converging as

sample size (degrees of freedom) increases, the value for the t− distribution is never
less than for the Normal. Therefore confidence intervals computed using the t− dis-
tribution will be slightly wider, or at least no smaller. This in turn means that we
are making a slightly less strong, that is a slightly more conservative, statement if we
compute those values using the t− distribution. Given that this inference is approx-
imate, and given that we would rather err on the side of weaker statements rather
than statements which are excessively strong (in other words we would rather not

exaggerate the strength of the conclusions that we can draw from the data), many
statistical workers will tend to prefer the slightly more conservative confidence inter-
vals produced by use of the t− distribution. This is a perfectly sensible practice as
long no one is deluded into thinking that the confidence intervals are exact because a
t− distribution is used rather than an ‘asymptotic’ Normal. Whichever of these dis-
tributions is applied here, we are relying on the asymptotic approximation provided
by the standard Normal, and justified by the central limit theorem.
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Chapter 13

Point estimators

Much of the time, the quantities that we want to estimate are scalar values, or
sets of scalar values. These might be responses of one variable to another such as
elasticities, probabilities, moments of the distribution such as the mean or variance,
and so on.

For example, we might want to estimate the price elasticity of demand (propor-

tionate change in demand divided by proportionate change in price) for gasoline, in

order to reduce consumption and environmental damage, using a Pigovian tax.13 This
example also illustrates some of the ways in which we approximate an entire time
sequence with a subset of the values; in fact, the introduction of a tax on gasoline
will have an immediate effect but also a changing effect over time, as people adapt
their behaviour to the new tax. The immediate impact might arise only through a
reduction in optional or recreational trips in the car, but over time other adaptations
become possible, such as buying a smaller car than when gasoline prices were higher,
building (in response to demand conditions) more apartments near areas where many
people work, rather than houses in the suburbs, and so on. Typically, we do not at-
tempt to estimate the entire dynamic path of the response of gasoline demand to
a change in price over the long horizon until it stabilizes at some value; instead we
usually approximate the information in this path with a short-term elasticity (the
immediate effect that we observe in the first weeks or months after the introduction
of a tax, before capital expenditures have adjusted) and a long-term elasticity (the
value to which the elasticity settles down after people have had time to adjust fully
their stocks of capital, including cars and housing units). In this case we would
have two price elasticities of demand for gasoline to estimate, the short-term and the

long-term.14

Another example, which illustrates a different set of difficulties that we face,
would be estimation of the average effect of completing a university degree on the

13This term is a reference to the classic work of A.C. Pigou (1920) on the use of taxes

to reduce negative externalities.
14Of course, these values are different in different places and at different times, so
that we constantly need to be updating our statistical information about these values.
Nonetheless virtually all published estimates are less than one an absolute value,
indicating inelastic demand: a given percentage change in gasoline prices leads to a
smaller percentage change in demand. Typical values are around -0.4 for the short-
term elasticity and around -0.6 for the long-term elasticity. This information helps

to choose the tax rate that will reduce demand by a particular proportion.
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annual income of an individual, at different points in the lifespan; say at ages 30,
40, and 50. In using the word ‘effect’ in the previous sentence we seem to imply a
causal relationship, i.e. we imply that the fact of completing a university degree itself
raises the income of the individual. It’s possible of course that people who complete
university degrees will have higher incomes on average at each of these ages, simply
because people who complete a degree will on average have other qualities that will
tend to lead them to higher incomes, such as ability, persistence, capacity for a high
workload, and so on. The fact that a higher income is associated with completing a
degree does not necessarily imply that the degree itself was the cause of the higher
income. Attempting to distinguish causality from association is the subject of a large
literature in statistics and econometrics, to which we will refer only briefly later in
this book. For our present purposes, we simply need to note that this value, the
increase in income associated with the degree at each age, is a set of scalar numbers
that we want to estimate.

In order to obtain an estimate, we use an estimator.

Estimators

D13.1 An estimator is a function of the data that provides an estimate of a population
(‘true’) quantity.

For example, earlier we defined the sample mean N−1
∑N
i=1 xi as an estimator

of the true mean of the distribution of a random variable X. An alternative estimator

that we defined was the trimmed mean, (N − 2k)−1
∑N−k
i=k+1 xi, estimating the same

quantity, but with a different trade-off between efficiency and robustness. We saw
therefore that there could be more than one estimator of the same quantity, with
different properties.

D13.2 A point estimator is an estimator that produces a scalar value, or a vector of
values.

In the next chapter we will consider interval estimators, which produce estimates
of an interval within which some value lies, or is likely to fall.

If we use the label θ for the quantity of interest in the population, then we will

typically write the estimate as θ̂, which is some function of a data set X so that we

can write θ̂ = g(X).

Properties of estimators

There are typically numerous estimators that we might think of for a particular
problem. In order to choose among them, we need some objective criteria that we
consider desirable.
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First define the distribution of an estimator, F (θ̂), with density (if it exists) f(θ̂)

and mean E(θ̂).15

The bias of an estimator does not have quite the same meaning as in normal
speech, where it usually refers to an attitude on the part of a conscious human being
which will tend to push the individual toward one or another conclusion, independent
of evidence. The meaning here is related but does not imply any unfairness or poor
decisions; there are some contexts in which it makes sense to use a biased estimator
(see for example Chapter −−−−−−−−−−−−−−−−−−, time series).

D13.3 The bias of an estimator θ̂ of a parameter θ is E(θ̂)− θ.

An unbiased estimator has mean equal to the true value; a biased estimator does
not.

D13.4 An unbiased estimator is one for which bias(θ̂)=0.

An efficient estimator is one that uses information as completely as possible to
pin down the true value to as narrow an interval as possible (recall that although we
are talking about the value itself in this chapter, we will discuss estimating intervals

in the next chapter); θ̂1 is said to be more efficient than θ̂2 if the variance of θ̂1 is

less than the variance of θ̂2. Of course, if θ̂1 has a larger bias, it may be worse for
our purposes in spite of having lower variance, so that we may need to trade off the
two qualities of low bias and low variance.

D13.5 An estimator θ̂1 is more efficient than another, θ̂2, if var(θ̂1) < var(θ̂2).

In order to make a trade-off in some formal way, it’s useful to define some
function of the bias, variance, or other features of the distribution that describe how

bad the outcome is considered to be when θ̂ misses θ by a particular amount. We
will often then want to estimate the expected value of this ‘badness’ or loss over the
distribution of the estimate.

D13.6 A loss function `(θ̂, θ) is a real-valued function that describes the loss associ-

ated with an estimate θ̂ when the true value is θ.

The loss may be purely a function of the estimation error, θ̂ − θ, in which case

the loss function can be written as `(θ̂ − θ).

15There may be points where the density does not exist because, for example, the
distribution function jumps at a certain point, in which case the slope is non-finite

and there is no finite value for the derivative, or density.
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In order that this function can represent loss, it must be true that `(θ̂, θ) ≥ 0

and `(θ̂, θ) = 0 where θ̂ = θ.

D13.7 A risk function L(θ̂, θ) gives the expectation of the loss associated with an

estimate θ̂ when the true value is θ.

Although loss and risk are clearly distinct concepts, it is commonplace to refer
to either of them as a loss function (that is, either the loss function or the expectation

of that function over the density of the estimate).
Here are several examples of risk functions; in each case.strictly speaking, the

corresponding loss function is defined at a single value, rather than as an expectation

over the distribution of θ̂; for example, the squared-error or quadratic loss is `(θ̂, θ) =

(θ̂− θ)2. However, again following common usage, we will generally use the term loss
function for either loss or risk, relying on context to distinguish a single value from
the expectation.

Mean squared error: L(θ̂, θ) = E[(θ̂ − θ)2].

Mean absolute error: L(θ̂, θ) = E[|θ̂ − θ|].

Linear-exponential (‘linex’) loss: L(θ̂, θ) = E
[
exp a(θ̂i − θi)− a(θ̂i − θi)− 1

]
,

where exp(.) is the exponential function, i.e. exp(z) ≡ ez, and a is a shape parameter
that determines whether errors increase exponentially on the positive or negative side.

These are theoretical values of the functions, defined using the (population) ex-

pectation. If one is estimating the loss (risk) function on empirical data, for example
on a series of forecasts and outcomes, then the expectation would be replaced by an
estimator such as the sample mean. For example if ŷ is a forecast of a random variable
y, and if a sequence of N forecasts of it becomes is available, then we could estimate

the mean squared error from this estimator or the future value as
∑N
i=1(ŷi − yi)2.

The next figure illustrates the three functions of a given error. Notice that the
linex functions are individually asymmetrical around zero. In the pair illustrated here
the left-hand side of one resembles the right-hand side of the other because the shape
parameters are equal and opposite; however each is linear on one side of zero and
exponential on the other. Notice also that the growth rate of the exponential function
eventually comes to dominate the squared-error function as the error increases in
magnitude.
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Figure 13.2.1

Loss as a function of θ̂ − θ :
Absolute error, squared error and Linex loss functions

Each of these functions has other interesting properties. It’s straightforward
to show, although one needs to be very careful to keep track of parentheses and
expectation operators, that the mean squared error is equal to the squared bias plus
the variance, so that if the bias is zero, the mean squared error is equal to the variance
of the estimator. Formally:

Theorem 13.1: (Mean squared error = squared bias plus variance.) Let θ̂ be an
estimator of a parameter θ. Then

E[(θ̂ − θ)2] = (E[θ̂ − θ])2 + E[(θ̂ − E[θ̂])2].

Proof: See the Appendix.

The Mean Absolute Error function is non-differentiable at zero: although this
is difficult to see in the figure above, the two straight lines meet at zero at a fixed
angle rather than in a smoothly curved transition. This means that there is no
unique tangent to the function at zero, and therefore no unique derivative. One
result is that the MAE is more difficult to use in theoretical work; one cannot use
the derivative of the function at all points. Proving results that can be proven
straightforwardly for the MSE often requires much more mathematical sophistication.
This is one of the reasons that the MSE is widely used; nonetheless it is often argued
that symmetry is an unrealistic description of a user’s loss for many problems. The
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linex loss function is one way to allow a departure from symmetry, describing either
positive or negative errors as causing exponential loss, depending upon the sign of
the parameter embodied in the function. However, symmetry may be a reasonable
approximation for many problems, or at least a reasonable starting point if one does
not know what asymmetries may be present in users’ loss functions.

Among other properties that we would like an estimator to have, consistency
(i.e. with enough data, the estimator will converge probabilistically to the true

value) and asymptotic normality are two of the most commonly investigated. It is
often impossible to establish these properties by applying laws of large numbers and
central limit theorems to functions of the data that the estimator is based upon.

D13.8 An estimator θ̂ is consistent for a parameter θ if θ̂
p→θ as the sample size

N →∞.

Defining asymptotic normality requires a little care because it may apply even
in cases in which the density of the estimator does not exist at any finite sample size;
we cannot therefore state that the density of the estimator must converge on the
Normal density, as the density of the estimator may not exist at finite sample sizes.
Nonetheless the distribution of the estimator may converge to the Normal distribu-
tion. The following is a simple definition which refers to the Normal distribution
function, although there is no closed form for that function, and to the concept of
convergence in distribution introduced earlier.

D13.9 An estimator θ̂ is asymptotically Normal if the distribution function of the
estimator converges on the Normal distribution function.

Principles and methods for defining estimators

An estimator is a function of observable data. What function of the data should
one choose for a given problem?

Sometimes this question is answered by specifying an arbitrary loss function
for estimates, so that the estimator is chosen by minimizing this loss function. In
some cases this can be done analytically, often by taking a derivative of the loss and
minimizing it, but even in more difficult cases the function can usually be minimized
using numerical methods; numerous algorithms are available to minimize arbitrary
functions, although in many cases these will only find a local, rather than a global,
optimum. For example, in cases in which we are trying to fit or ‘explain’ a large
number of data points with a model having a few parameters, we might take as
our function to be minimized either the sum of squared discrepancies between the
predicted and actual values for each data point, or the sum of the absolute values of
these discrepancies.

However, there are also a number of general principles available for defining
and computing estimators, and there are reasons for relying on such principles when
we can. First, although in some cases it may be easy to come up with a sensible
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estimator by simple reasoning, in trickier circumstances having principles for defining
estimators may be helpful, because simple reasoning does not point to any obvious
estimator. As well, general properties of estimators defined according to a principle
can sometimes be established, so that any example of an estimator defined according
to such a principle will be known immediately to have certain features. Moreover,
knowing that an estimator was defined according to some principle may make clear
that there is a common structure with estimators used in another type of problem,
possibly allowing the investigator to benefit from experience and knowledge that has
arisen in other contexts.

In the rest of this section we will give a brief introduction to several of these
principles, and we will see more examples of their application in later chapters, par-
ticularly when we review regression models.

Least squares (LS)

To understand least-squares estimation, it may be useful to return to the problem
that originally motivated it: that of finding an approximate solution to a system of
equations.

Consider the system

ax+ by =f

cx+ dy =g.

Recall that a system of linear equations such as this may have no solution (for ex-
ample, 2x + 3y = 5; 4x + 6y = 11 : these statements cannot both be true because
the latter statement implies, dividing by 2, that 2x + 3y = 5.5, which contradicts

the former) or one unique solution (for example, 2x + 3y = 5; 4x + 5y = 11)16, or

an infinite number of solutions (for example 2x+ 3y = 5; 4x+ 6y = 10 : in this case

the two equations contain the same information (i.e. are linearly dependent), so any

pair (x, y) that solves the first will also solve the second).
Expressed in matrix form, the general linear system is[

a b
c d

] [
x
y

]
=

[
f
g

]
,

or Ax = b. A unique solution to this exists if the matrix A is invertible, in which

case the solution is x = A−1b. Invertibility of the matrix A requires that the two
equations be linearly independent, or equivalently that the matrix A be of full rank,
or (again equivalently) that it have a non-zero determinant.

Now consider the case in which there are more equations, still with two unknowns
in each. There will now be no solution to the system, unless some of the equations are

16From the first equation we have 2x = 5− 3y and so 4x = 10− 6y; substituting the
latter into the second equation we have (10− 6y) + 5y = 11, or y = −1; substituting

this back into one of the original equations, we have 2x = 8 or 4x = 16, i.e. x = 4.
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redundant (i.e. linearly dependent with other equations in the system). For example,
the system

2x+ 3y =5

4x+ 5y =11

7x+ 9y =15

−x+ 10y =− 11

7x− 7y =30

has no solution, which we can easily see because the solution to the first pair of
equations, (x, y) = (4,−1), does not solve any of the other equations.

Since no solution exists, we might decide to look for an approximate solution,
using some criterion to define what constitutes a good approximation. We will begin
by explicitly recognizing that the equations will not be solved exactly, by writing in
a set of terms to describe the discrepancy (or ‘deviation’ or ‘error’ or ‘residual’) in
each equation:

2x+ 3y =5 + ε1

4x+ 5y =11 + ε2

7x+ 9y =15 + ε3

−x+ 10y =− 11 + ε4

7x− 7y =30 + ε5.

We have used the common notation εi to represent the discrepancy in the ith equa-
tion. Our aim now is to find a good approximation, which in general entails keeping
the values of the εi terms as small as possible, but bearing in mind that a change
in a value of x or y that lowers one of these discrepancy terms will in general raise
another.

In order to come up with some solution, we might define a good approximation
as follows: define the best approximating solution (x̂, ŷ) as the pair of values that

minimizes the sum of squared discrepancies,
∑5
i=1 ε

2
i . This leads to an estimator:

(x̂, ŷ) = argmin

[
5∑
i=1

(εi(x, y))2

]
,

where argminf(θ) means ‘the value of the argument, θ, at which the function f(θ) is

minimized’. Here the argument is the pair (x, y), and in the last expression we have
written εi as an explicit function of this argument.

In the example just given, the least-squares approximate solution (to five signifi-

cant digits) is (x̂, ŷ) = (3.4005,−0.8220), and the reader may easily verify that other
pairs of values lead to a higher sum of squared discrepancies. The method by which
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this solution was computed is given below, in Chapter 18, on linear regression. In a
regression problem, the values x and y are estimated weights on data series given by
the vectors (2,4,7,-1,7) and (3,5,9,10, -7).

Minimizing the sum of squared discrepancies (errors) is a very widely applied
technique. Because the criterion is quadratic, its derivative is linear, leading to a
linear rule for finding the optimum (minimum); again see Chapter ——- . This
linear rule is not only convenient, but in some circumstances coincides with the form
of estimator implied by other principles which have desirable general properties, in
particular Maximum Likelihood.

Least absolute deviations (LAD)

LAD can be used to treat the same problem as above, but in this case, we replace
the quadratic criterion with

(x̂, ŷ) = argmin

[
5∑
i=1

|εi(x, y)|

]
.

Changing the criterion in this way of course changes the relative weight of small
and large deviations in defining the best approximation. With the LAD criterion,
the ‘badness’ of a discrepancy changes linearly rather than quadratically with its
magnitude, so that, for example, an error of 10 is only 5 times as bad as an error
of 2, rather than 25 times as bad as the least-squares criterion would imply. Which
of these is preferable will of course depend upon the problem and the person using
the method. However, there is an additional important difference: the LAD criterion
function, which is the absolute value function, is non–differentiable at zero (that is,
the absolute value function has a corner or kink at zero, so that there is no unique
tangent line. The minimum has to be found numerically rather than by deriving
a simple equation for the estimator, and the fact that the criterion function is not
everywhere differentiable means that more sophisticated mathematics is typically

required in order to prove results concerning the properties of the estimator.17

Method of Moments (MoM)

A Method of Moments estimator is one in which unknown population moments
are replaced, and estimated, by corresponding sample moments.

When we studied descriptive statistics in Chapter 3, we computed a number of
functions of the data that we later saw as analogous to moments of the distribution.

For example, the sample mean X =
∑N
i=1 xi is the sample analogue of the population

mean E(X), and can be taken as an estimate of the population mean, although we

17Notice by the way that the criterion argmin [
∑n
i=1 εi(x, y)] , without the absolute

value, would not lead to good results: this implies that negative and positive errors
cancel each other out, so that for example an estimator which leads to equal and

opposite errors would be deemed just as desirable as one that picks the correct answer.
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saw that other estimators such as a trimmed mean are also available. As the analogue

of the population quantity, X is a Method of Moments estimator.

Some other descriptive statistics that we saw differ from the method of moments

estimator. For example, the population variance is defined as E(X − µ)2, and the
Method of Moments estimator takes the analogous form, replacing µ with its sam-

ple analogue, X. The Method of Moments estimator of the variance is therefore∑N
i=1

(Xi−X)2

N , which differs from the unbiased estimator of the variance, which uses

the factor (N − 1) in the denominator.

Method of Moments estimators (and a generalized version of the estimator) have
frequently been used for estimating economic models in cases where the theory model
suggests that a certain moment should take a value such as zero, in the population;
for example, an economic theory may suggest that two quantities are independent,
so that the expectation of the product of the two quantities should be zero. Imposing
the condition that the expectation be zero ensures that the estimated model conforms
with the assumed economic theory, and if this condition is then used to estimate other
parameters, then those results also have been obtained by using and imposing the
information implied by the economic theory. Whether this is desirable or not depends
upon what one is trying to achieve: exploring the implications of the economic theory,
versus exploring the content of the data set with minimal constraint.

Maximum Likelihood (ML)

Like LS, Maximum Likelihood is a very widely applied principle, and in fact in
some important cases they lead to the same estimator.

Consider the density function (or probability function if discrete) corresponding
with a random variable X. Although we often suppress the explicit dependence of a
density function on the parameter vector, to write f(X), a more complete notation for

the density function is f(X, θ), where θ is the vector of parameters of the distribution;

for example, if the distribution is Normal, the parameter vector θ = (µ, σ2) consists
of the mean and variance parameters that characterize this distribution.

Earlier, we thought of this density, given knowledge of θ, as describing to us
the values of X that are relatively likely or unlikely to arise. For example, if the

distribution is Normal and θ = (µ, σ2) = (2, 10), then approximately 95% of the

values of Xthat we will observe live in the interval 2 ± 1.96
√

10, since
√

10 is the
standard deviation.

In using the density function in this way, we are taking the parameters as given,
and asking where the observations are likely to arise. Another way of using the same
information from the density would be to take a set of X values as given, and ask
where θ is likely to lie: that is, we could try to deduce what the parameters must be,
given a set of observations. More precisely, we could ask which parameter values in
a given density are most likely to have led to the observed sample of data.

Recall that if we have a density function, then we can look for the most likely
region in which to find data points by looking for the interval where the density
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is highest. Analogously, if we take the data as given and look for the most likely
region in which to find a parameter, we can again look for the interval in which the
density–called likelihood when we view the data as fixed and the parameter vector
as changeable–is highest. That is, we can maximize this likelihood.

The ML estimator is then.

θ̂ = argmax L(X, θ),

where L(X, θ) ≡ f(X, θ), but now interpreted such that X represents a fixed set of
N observations, and θ is varied.

To take a simple example,
Actually obtaining an estimator from the ML principle involves, conceptually,

two steps. First, one needs to determine the likelihood function of the observations,
using the assumed likelihood, which is a function of unknown parameters. This
needs to be maximized over values of the parameters, in order to obtain estimates
of them corresponding to the maximum of this likelihood. Sometimes this can be
done analytically, but often the optimization is numerical, using a one of a number
of well-known computational algorithms.

An important case in which the optimization may be straightforward analyt-
ically is that of a Normal likelihood function, so that a quadratic function of the
observations arises, leading to a linear derivative. Setting a linear derivative to zero
gives a linear formula for computing the ML parameter estimates. In some cases,
as for example in obtaining parameter estimates of a linear regression model (again

Chapter—- below), the ML and LS criteria result in the same linear expression for
estimates, and so identical estimated parameters are given by the two methods.

Of course, in maximizing a likelihood function, we assume that we know what
that function is, i.e., we assume that we know the true density of the data. In
practical examples that will typically not be the case, but we may decide to use this
estimation method with an assumed likelihood function which is believed to be a good
approximation to the true likelihood. Estimation using the computational method
of Maximum Likelihood, but where the assumed likelihood function is not identical
to the true likelihood, is commonly called quasi-Maximum Likelihood (QML). For
example, we may use the Normal density as a likelihood function, in a case where
the unknown true density is also symmetric, but has thicker tails than the Normal.
In this case we would obtain QML estimates.
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Chapter 14

Interval estimators and
confidence intervals

Statistical answers to empirical questions do not involve certainties: they are
estimates, probabilities, ranges within which the true answer might lie, and so on.
When we obtain a point estimate of something, we generally want further information
to go along with it: how accurate is this estimate likely to be? For example, if we
estimate a price elasticity of demand for gasoline to be -0.5 (in a particular place,

at a particular historical time), we will generally also want to know whether that
estimate is likely to be accurate to within, say, ±0.1 or ±0.4. The former interval
gives us much clearer information about what is likely to happen in response to an
increase in the gasoline tax. Similarly, if we estimate that 48% of voters will vote
‘yes’ to a referendum question, we will have a much better idea of the likely outcome
if we are highly confident that the answer will lie within ±0.01 of this value than if
we can only be confident of lying within ±0.05. Of course, in a case like this we can
directly estimate the probability that the referendum result will be positive using the
known (binomial, asymptotically Normal) distribution of the point estimate.

In general, a complete answer to a point estimation problem involves not only
the estimate, but a measure of the uncertainty associated with that estimate, or
alternatively a range within which the correct answer to the problem will probably
(according to a formal computation) lie.

We have seen examples in previous chapters in which we could calculate the
probability that a true value lies within a certain interval around an estimate. The
present chapter will apply methods given in previous chapters on sampling distri-
butions, and will review and extend our treatment of the computation confidence
intervals for standard point estimation problems, where we can work with standard
distributions given to us by statistical results such as a central limit theorem. We
will also give further examples of computations of confidence intervals from empirical
distributions of data or simulated statistics.

Definitions

D14.1 An interval estimator is a function of the data that provides estimates of lower
and upper bounds A and B such that a quantity of interest (a parameter) lies in the

interval [A,B] with a given probability p.

D14.2 A confidence interval for a parameter β is an interval [A,B] on the real line

such that the probability that β lies in [A,B] is 1− α.
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Typical values of α are small, such as 0.01, so that the probability that the
interval contains the true value is close to 1.

Where we have more than one parameter to describe, we may estimate a con-
fidence region: that is, a region of possibly more than one dimension such that the
probability that each of a set of parameters will lie within the region is 1− α.
Obtaining confidence intervals: two examples

We can think of ourselves as following a few simple steps in order to obtain a
confidence interval for a given value. First, we need to obtain an estimate, a point
estimate in this case, for the particular value. Next, we need to know the distribution
that applies, at least approximately, to this estimate: this will typically be the step
that requires the most sophistication. For many problems, however, we will be able to
interpret our estimate as the mean of something that possesses at least two moments,
so that we will be able to rely on a central limit theorem for this distribution. (In
other cases, another distribution may apply, or the form of distribution may be
unknown and we will have to use a computer simulation.) Finally, we need to know
the parameters of this distribution: for example, if we are dealing with an asymptotic

normal distribution, we will need to know the variance; if we are dealing with a χ2

distribution, we will need to know the degrees of freedom, which will again allow us
to determine how much of the distribution lies between particular bounds.

With a point estimate, a distribution and estimated values of the parameters of
this distribution, we typically have the information that we need to determine how
far on either side of the point estimate we need to draw our boundaries in order
to have a given probability, such as 95% or 99%, that the true value will lie in our
interval.

The next section gives two examples of confidence intervals for the difference in
means of two random variables.

Confidence interval for the difference of two means: matched pairs

One of the most common problems that we see is determining whether two
variables are genuinely different from each other, and in particular, whether the
means of the two variables are the same or not. Two medical treatments for a given
condition, two different types of education or training program, salaries offered to
two different types of worker: are they genuinely different on average, or are the
differences that we see just sampling error? We will now look at this problem by
bounding the difference between two variables into a confidence interval.

For the first example, let us consider obtaining a confidence interval for the
difference in the mean of two variables. We will begin with the relatively straight-
forward case of pairs of observations, so that we can directly compute the difference
in each case. For example, pairs of plants in a greenhouse may be given one of two
fertilizers, and their growth measured over the following months. For each pair, we
can directly measure the difference in growth. The following example is based on
simulated data on amounts of growth for each of 1000 pairs of plants. Note that the
growth is non-negative, and strongly right-skewed, so that the data are clearly not
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Normal. Figure 14.4.1 plots the differences in growth between the two plants in each
of 1000 cases.

Figure 14.4.1
Estimated density of differences, X1 −X2

1000 data points

One question that we would naturally want to answer is whether there is any
difference in the efficacy of the two types of fertilizer, and if so we would like to have
an idea of how big that difference is; in other words, we want to obtain a confidence
interval for the difference in growth for plants treated with fertilizer 1 versus those
treated with 2.

Using these thousand data points, we compute a mean difference of -0.281, with
a standard error of this estimated mean (the square root of the estimated variance of

the differences divided by n) of 0.0657. We do not know the distribution of the data in
this case. However, we are looking for the distribution of the mean of the data, which
we can approximate using a central limit theorem. Given the conditions required to

apply a central limit theorem, and in particular that the first two moments exist,18

we have

d
D→ N(µ, σ2/n),

where d is the estimated (or sample) mean of the difference; n = 1000; µ is the true

mean of the difference, and σ2 is the true variance of the difference (so that σ2/n

18We can in principle check this by estimating the tail index, but it is in most cases

simply assumed to be true because it is true and a very wide range of distributions.

47



is the variance of the mean of the difference, where n is the sample size). Given
this approximate distribution from a central limit theorem, we can construct an
approximate confidence interval using the Normal distribution as in earlier chapters:
using the familiar value zα/2 = 1.96 from the standard Normal distribution and

replacing σby its estimate, we have

P (µ− 1.96(0.0657) < d < µ+ 1.96(0.0657)) ' 0.95,

or, re-arranging and substituting d = −0.281,

P (−0.281− 1.96(0.0657) < µ < −0.281 + 1.96(0.0657)) ' 0.95,

or P (−0.410 < µ < −0.152) ' 0.95.

Notice that the value 0 is not in this confidence interval; we can be about 95%
confident (in fact more than that, since 0 is well away from the boundary) that 0
is not the average difference between these two series. We have established in other
words that we can be quite confident that there is a genuine difference in the means
and that the observed difference is not simply due to sampling error. Moreover, it
is the second random variable (treatment with fertilizer 2) that tends to be higher:

X1 −X2 is on average negative. (This is the same type of computation that we will
perform later in testing hypotheses: here, we might test the hypothesis that the true
difference is zero; it turns out that we can be at least 95% confident that that is not
so.

To illustrate the effect of sample size and also to make a point about what we
can conclude when a value of interest is in a confidence interval, let’s perform this
same exercise again, but with only the first 100 sample points from this data set.
The estimated density of the difference X1−X2 from the first hundred sample points
follows.
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Figure 14.4.2
Estimated density of differences, X1 −X2

Sub-sample of 100 data points

The estimated density is similar, but of course with only 100 sample points, fewer
extreme values appear and so the tails of the estimated density are not as wide. The

corresponding estimates on the n = 100 sample are d = −0.366 and
√
s2/n = 0.214.

The estimated confidence interval becomes

P (−0.366− 1.96(0.214) < µ < −0.366 + 1.96(0.214)) ' 0.95,

or P (−0.785 < µ < 0.053) ' 0.95.

Although on the smaller sample the estimated mean difference was actually
greater, 0 would not have been in the confidence interval on that sample: the es-
timated variance of the sample mean is larger (the square root of the sample size
differs by the square root of 10, or about 3.16, so apart from sampling variation the
standard error of the mean is bigger by this factor). On a sample of 100 points we
would not have been highly confident that the difference is genuinely non-zero; on a
sample of 1000 points, we could be.

This example illustrates a couple of points that are applicable widely. First, if a
difference or other effect is present, it may nonetheless not be detectable in a small
sample size. Because this is always a possibility, failing to detect an effect such as a
difference does not prove that there is no effect. If someone had looked at the smaller
sample and said, ’See? There is no mean difference between the two samples’, that
would be incorrect reasoning. It would be true to say that we cannot be confident
that there is a difference, or to say that a zero difference is in our confidence interval,
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but it would not have been correct to conclude that the data have established that
the difference is zero. (Of course, there is a whole continuum of values that are in

the confidence interval.) That one cannot find strong evidence against a thing does
not prove that the thing is true. We will return to this point below when we study
hypothesis testing.

Second, the strength of an effect, or in this case the size of the difference, will
affect the number of sample points that we will typically require to detect it. In this
example, the difference in mean between the two samples was small, and we could
only be confident that the difference is non-zero once we had obtained a fairly a large
number of sample points. Had the effect been much larger, we would have been able
to detect it in a smaller sample size. In general, the more subtle the effect that we
are trying to detect, the more sample points we will typically need in order to be
confident that it is present.

Confidence interval for the difference of two means: independent samples

In the example given above, we could compute directly a set of differences be-
tween the two random variables: the differences become a new random variable, and
we simply computed the sample mean and standard error of that random variable
as inputs to a formula obtained from a central limit theorem, in order to obtain a
confidence interval for the mean of the differences. In many cases however we will
have two samples of data which are not matched, and not even of the same size, and
so it will not be possible to compute a series of differences to make calculations on
directly. We can nonetheless again compute a confidence interval for the difference
in the means of the two samples, using the expression for the variance of the linear
combination of random variables, as long as it is reasonable to suppose that the two
samples are statistically independent.

For a test statistic based on the central limit theorem, we need to estimate the
mean and variance of the mean. Recall that E(X1 − X2) = E(X1) − E(X2) : the
mean difference between the two can be computed by taking the difference of the
two means individually. In the previous section we were able to create the random
variable (X1−X2) and estimated sample mean directly; with unmatched samples, we
can nonetheless estimate the sample mean for each random variable and subtract one

from the other. So computing the estimate d (as X1 −X2) is still straightforward,
even though we don’t have a sequence of differences.

Obtaining the estimated variance or standard error of the difference requires a
little more reasoning. Recall however that for two random variables X1 and X2, we
can compute the variance of a linear function of the two variables as var(aX1+bX2) =

a2var(X1) + b2var(X2) + 2abcov(X1, X2). Without a sequence of pairs from the two
distributions, it may not be possible to estimate the covariance term. But if the
circumstances are such that it seems reasonable to assume that the two variables
are independent, then this covariance is zero. In that case, specializing the formula

to the difference of the means, we have var(X1 − X2) = var(X1) + var(X2) =

var(X1)/n1 + var(X2)/n2, where ni is the sample size for variable i, i = 1, 2.
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Here is an example on simulated data with n1 = 100 and n2 = 1000. We compute

X1 = 0.969, X2 = 1.192, and so d = −0.223; next, var(X1) = 0.0135, var(X2) =

0.0021 and so the standard error of d, that is the square root of the expression given
above for the variance of the difference, is 0.125. The corresponding 95% confidence
interval for the difference in the means of the two series is then −0.223±1.96×0.125,
or [-0.468, 0.022].

Notice that the variable for which the sample size is smaller makes the larger
contribution to the variance, or standard error of the difference: that variable is less
precisely estimated, so more of the uncertainty about the difference stems from that
variable. Imagine for example that we increased the second sample size from 1000 to
1 million or 1 billion: we would get increasingly precise estimates of the mean of the
second random variable, but after a while increasing the sample size will have very
little effect on the variance of the difference: in the limit, where we know the mean
of the second random variable exactly, there will still be uncertainty about the mean
of the difference, because the mean of the first random variable is uncertain.
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Chapter 15

Statistical inference I:
parametric
hypothesis tests

Concepts and topics:

p-values

Type I and type II error

Test size

Test power and the power function

Data mining and multiple tests: first look and example
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Chapter 16

Statistical inference II:
non-parametric
hypothesis tests
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Chapter 17

The interpretation of
statistical tests
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Chapter 18

Linear regression

In Chapter 8, we introduced the conditional expectation. Since we do not nor-
mally know the full joint probability distribution of a set of variables, we cannot
directly calculate the conditional expectation using definition 8.5.1, but we noted
that we can approximate it using, for example, a linear regression. We will now learn
how to estimate linear regression models to accomplish this.

Of course, conditional expectations may be non-linear, and so linear regression
will typically be considered as an approximation (by Taylor’s theorem, a straight line
provides a local approximation to a function, but whether this approximation will be
adequate depends on the purpose for which it will be used). We can to some extent
handle non-linearity by using a linear function with non-linear terms, for example by
including squared terms or logarithms of conditioning variables in a linear form.

More generally, we can estimate conditional expectations non-parametrically,
that is, with flexible shapes which do not impose any fixed functional form, using for
example kernel regression methods related to the kernel density estimators discussed
earlier. This chapter will however deal with only the simplest case of a regression
model in which a parametric linear form is assumed, and we need only estimate the
parameters of this form to specify the conditional expectation function completely.

The least-squares (LS) criterion

Recall that in Chapter 13 we discussed some criteria by which to define a ‘good’
estimator, so that optimizing a criterion can give us a rule that will allow us in
principle to pick the best estimator within some class. One of these criteria was
the least-squares estimator. To draw the analogy to estimating a linear conditional
expectation model, let us return to the example given in Chapter 8, of a model having
the form

E(Y |X1, X2) = a+ bX1 + cX2,

where Y is income, X1 is age and X2 is years of formal education. The parameters
of this linear model,a, b, c, are to be estimated.

Recognizing that this form will not fit the data perfectly, that is that Y will not
be exactly equal to its conditional expectation for each (or any) observation, we will

usually introduce a term describing the discrepancy (or error) between the observed
Y and its conditional expectation as given in the equation above. We therefore write

Y = a+ bX1 + cX2 + ε,

55



where ε is the symbol used here for this discrepancy. Referring to each data point
individually, instead of in this vector form, we could write

Yi = a+ bX1,i + cX2,i + εi, i = 1, ...N,

for each observation i in a sample of N observations.

We would like to pick parameters (values that can be adapted to fit the data

while remaining in the context of the model that we have specified) so that the model
fits well. One criterion by which to define what it means to fit well is that the εi’s are

as small as possible, in the sense of minimizing their sum of squares,
∑N
i=1 ε

2
i . Using a

power of 2 (a quadratic) has two advantages: all discrepancies count as positives (we
wouldn’t consider that large negative errors in a model somehow offset large positive
errors, and make it a good model: instead we’d like errors to be small in magnitude,
regardless of whether they are positive or negative); and the derivative of the square

gives a linear function, leading to a linear rule for minimizing this quantity. (We
could also use the sum of the absolute values of the errors as our criterion, leading to
the least absolute deviations or LAD estimator, but this requires more sophisticated
mathematics since the absolute value function is not differentiable at zero, so we
cannot use elementary calculus to obtain a simple formula for the estimator, as we
do with least squares.)

A simple one-variable regression

We consider estimation of a linear model of a variable y, in order to obtain a
conditional expectation E(y|X), where X is a matrix of conditioning variables. We
have n observations, and there are k separate variables in X, each of which also has
n observations available. We could write the model as:

yi = β0 + β1X1,i + β2X2,i + . . . βkXk,i + εi,

where the β’s are parameters to be estimated, and εi is an unobservable error (dis-

crepancy) term, allowing for the fact that the model will not fit perfectly. In matrix
notation, we can write this as:

y = Xβ + ε, (1)

where y,X, β, ε are of dimensions n × 1, n × k, k × 1, n × 1 respectively. Note then
that Xβ becomes of dimension n × 1 also (an n × k matrix multiplied by a k × 1

vector). For example, the vector of parameters is

β =


β1
β2
...
βk

 .
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We assume that ε has a mean of zero, which in practice we can assure by including
a constant (intercept) in the model, as we will see later.

Each column of the X matrix represents a different data series, and the n el-
ements in that column are the observations on the data series. For example, in a
model involving individual human subjects, the columns might represent age, gender,
years of formal education, etc. Each row of the matrix would represent a particular
individual, so reading across the row we have that individual’s age, gender, years of
formal education...

Our aim again is to estimate this model in order to obtain a conditional expec-
tation of y given the available X variables, recognizing that there may be no causal
link between X and y, and that we could also condition on other variables.

If we estimate the parameters β, then the estimated conditional expectation

becomes: ̂E(y|X) = Xβ̂, since E(ε) = 0. (Dropping the matrix notation for a minute,

this is equivalent to ̂E(yi|Xi) = β̂0 + β̂1X1,i + β̂2X2,i + . . . β̂kXk,i). We use the

circumflex, ̂E(yi|Xi), to indicate that this is an estimated conditional expectation

(although in practice people often omit this symbol).

Now we can ask how we should estimate the parameters β, that is, the unknown
weights in this linear approximation to the conditional expectation function. The
most commonly applied method for this simple model is that of least squares, i.e.,
one minimizes the sum of squared residuals (the estimated errors) by choice of β.

Consider first a simple case that we can handle without matrices. Let yi =

βxi+ei, and let the estimated version of the model be yi = β̂xi+êi. The ‘residuals’ are

the êi, and the sum of squared residuals is
∑
i(yi−β̂ixi)2 =

∑
i[y

2
i −2β̂xiyi+(β̂ixi)

2].

Taking the derivative with respect to β̂ and setting to zero for an optimum, we have

−2
∑
i(xiyi) + 2

∑
i β̂x

2
i = 0, or

β̂ =
∑
i

(xiyi)/
∑
i

(x2i ). (2)

Notice that we began with a quadratic criterion– the sum of squared errors–

and so by taking a derivative, the square becomes a linear rule (d/dx(x2) = 2x).

Equation (2) is a linear rule for computing the coefficients that minimize the sum of

squared residuals: the (ordinary) least squares estimator, or OLS .
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We can derive the more general solution for the SSR-minimizing coefficients in
equation (1) using matrix differentiation, yielding the solution

β̂ = (X ′X)−1X ′y. (3)

Notice that equation (2) is a special case of this, that applied when X has only one
column. In the next section we will derive this result.

Multiple regression

In order to derive the estimator just mentioned (i.e. for any number of regres-

sors), it’s important to begin by representing the data in a standard form; the answers
will correspond with this standard form and will be readily interpretable. To return
to equation (1) above, we represent the data on the ‘dependent’ variable y as:

y =


y1
y2
...
yn

 ,

where again n is the sample size. Note that the data are ordered from first to last
observation; in cross-sectional data the order may be of no importance, but in time
series data the order is a crucial element of the data set and must be preserved.

The matrix of variables on which we are conditioning (the ‘independent’ vari-

ables) is n× k, with elements:

X =


1 X1,1 X2,1 . . . Xk−1,1
1 X1,2 X2,2 . . . Xk−1,2
1 X1,3 X2,3 . . . Xk−1,3
...
1 Xn,1 Xn,2 . . . Xk−1,n

 ,

where in this example we have labelled the individual observations with the variable
number first, and observation number second. This labelling convention could be
changed, but we do need the observations (rows) in order from first to last, and the

individual variables (columns) in whatever order we want; the order of the estimated

weights β̂i will correspond with this order of the variables. The first column, of ones,
will be a constant intercept in the model. Its presence guarantees the the sum of the
estimated errors in model (1) will be zero.

We will again choose parameter estimates β̂i in order to minimize the sum of

squared residuals: that is, we minimize ε′ε =
∑n
i=1 ε

2
i , or

min
β

(y −Xβ)′(y −Xβ) = min
β

(y′y − β′X ′y − y′Xβ + β′X ′Xβ).
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The two central terms on the right-hand side are equal, since one is the transpose
of the other and they are both scalars, therefore the same. So we can write the
minimization as

min
β

(y′y − 2β′X ′y + β′X ′Xβ).

Taking the derivative with respect to β using the rules given in the Appendix and

setting the result to zero for an optimum, and using the symbol β̂ now to denote the
value that solves the equation, we have

−2X ′y + 2X ′Xβ̂ = 0 −→ X ′Xβ̂ = X ′y −→ β̂ = (X ′X)−1X ′y.

Note that this assumes invertibility of the matrix X ′X, which is equivalent to the
assumption that X ′X is of full rank, which in turn implies that none of the rows or
columns of X is a linear combination of any other row or column. This essentially
rules out redundant regressors, which would be impossible to distinguish.

Computing standard errors of parameter estimatesn

The estimated parameter vector, β̂, is of course a random variable (being a

function of the data y), and so has a distribution around the ‘true’ values β. The way

in which we estimate the variances of these estimates (and therefore their standard

errors) depends upon what we can take to be true about the process, and there are
many techniques for obtaining these estimates, including simulation-based techniques
such as the bootstrap. Here, we will continue to consider only the simplest case, with
some strong assumptions on features of the process. In particular, for the regression
model y = Xβ + ε, we will assume that:

(i) E(ε) = 0

(ii) E(εε′) = σ2In
(iii) E(X ′ε) = 0

(iv) rank(X ′X) = rank(X) = k.

Assumption (i) is not restrictive since we can place a constant into the regression
model to account for any non-zero intercept, which will in fact also guarantee that the

sum of the residuals, ε̂, will be exactly zero.19 The second assumption indicates that
each one of the errors has equal variance, and so is in this sense each observation
is equally reliable and should get equal weight; if this assumption does not hold,
we can get instead compute generalized least squares estimates. Assumption (iii)
is critical, since if this does not hold, the unobservable errors will project onto the
space spanned by the X’s, changing the estimated coefficients.s Finally the linearly
independent regressors assumption (iv) is necessary in order to invert the matrix

X ′X, and so it will be obvious if this assumption fails– it will not be possible to

compute the coefficients from the formula β̂ = (X ′X)−1X ′y.

19You can prove this as an exercise.
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Now let us compute the variance-covariance matrix of the parameter estimates.
We begin with an additional assumption which is not necessary for regression in
general, but simplifies this computation by giving us a case of unbiased parameter
estimates. That is, we assume that the regressors can be treated as non-stochastic,
as when they are chosen values for an experiment.

We begin by writing β̂ = (X ′X)−1X ′y =

(X ′X)−1X ′(Xβ + ε) = (X ′X)−1X ′(Xβ) + (X ′X)−1X ′ε = β + (X ′X)−1X ′ε.

So E(β̂) = β+E[(X ′X)−1X ′ε] = β+(X ′X)−1E[X ′ε] = β, since the last term is

zero by (iii) above. So E(β̂) = β, and the estimator is unbiased in this non-stochastic

regressor case (more generally, we could obtain the weaker result that the probability

limit of β̂ is β, with stochastic regressors).

Next, we compute var(β̂) = E(β̂ − β)(β̂ − β)′. Using the results just obtained

above, (β̂ − β) = (X ′X)−1X ′ε, and so

var(β̂) = E((X ′X)−1X ′ε)((X ′X)−1X ′ε)′ = E((X ′X)−1X ′ε)(ε′X(X ′X)−1.)

Finally, assuming the X’s to be non-stochastic means that they can be taken out of
the expectation (e.g. E(cZ) = cE(Z) where c is non-stochastic), so we have

var(β̂) = (X ′X)−1X ′E(εε′)X(X ′X)−1 = (X ′X)−1X ′[σ2In]X(X ′X)−1

by assumption (ii) above. Finally, moving the scalar σ2, the identity matrix becomes

redundant (like multiplying by 1, we don’t need to write it explicitly), and we obtain

var(β̂) = σ2(X ′X)−1X ′X(X ′X)−1 = σ2(X ′X)−1.

We can estimate the error variance σ2 as s2 = ε̂′ε̂/(n − k), and we have the fully

operational estimator s2(X ′X)−1 for the variance-covariance matrix of the estimated

parameters, β̂. The square roots of the diagonal elements of this matrix are then the

standard errors of the individual parameter estimates β̂i, i = 1, . . . , k.
————————
R2 = 1− SSR/SST
y −Xβ̂ = ε̂
SSR = ε̂′ε̂
SST = (y − y)′(y − y)
————————–
H0 : a′β = c⇒ a′β − c = 0
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Appendix to Chapter 18

A1: Matrix Differentiation

Differentiation of matrices is essentially the same as scalar differentiation; that
is, the principles of calculus applied are identical. The difference is that we may be
taking the derivative of one or more quantities with respect to one or more others.
So we need to represent the answers in matrix form. More than one convention for
doing so is possible.

Let a,A, x be of dimension n× 1, n×n, n× 1 respectively. Clearly a′x =
∑
aixi

so
∂(a′x)

∂xi
= ai.

This is simply scalar calculus, since a′x is a scalar. We can do the same with
respect to each element of the vector x, however, and put the answers together into
a new vector– which will be a:

∂(a′x)

∂x
=

[
∂(a′x)

∂x1
,
∂(a′x)

∂x2
, . . . ,

∂(a′x)

∂xn

]′
= (a1, a2, . . . , an)′ = a.

Similarly,
∂(a′x)

∂x′
= a′.

Some other rules:

∂(x′Ax)

∂x
= (A+A′)x

∂(x′Ax)

∂x∂x′
= (A+A′)

∂(x′Ax)

∂A
= xx′

∂log(det(A))

∂A
= (A′)−1, if det(A) > 0.

These are the rules which we will be using. Other extensions of scalar rules can of
course be derived as well.
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A2: Covariance matrices and variance of a linear combination

Let a, V, x be of dimensions n×1, n×n, n×1 respectively. Then a′x =
∑n
i=1 aixi,

a scalar (1× 1) quantity.

Let µ be the mean vector of the vector x, so that E(x− µ) = 0.

The variance-covariance matrix of x, or simply the ‘covariance matrix’ or ‘vari-
ance matrix,’ is an n × n matrix such that each element (i, j) represents E[(Xi −
µi)(Xj − µj)]; where i = j, these terms are variances and where i 6= j, the terms are

covariances. Since E[(Xi − µi)(Xj − µj)] = E[(Xj − µj)(Xi − µi)], the (i, j) element

of the matrix is equal to the (j, i) element, and the matrix is therefore symmetric.

We can represent the covariance matrix in vector notation as

var(x) = E[(x− µ)(x− µ)′].

Notice that the transpose is on the second vector, so that we obtain an n×n matrix;

if the transpose were on the first term, we would obtain the inner product,
∑n
i=1(xi−

µi)
2, a scalar.

With the covariance matrix, we can obtain the variance of any linear combination
of the x’s. Since var(x) = E[(x− µ)(x− µ)′], we have

var(a′x) = E[a′(x− µ)(x− µ)′a] = a′var(x)a.

Note that this expression is of dimension (1× n)(n× n)(n× 1) or 1× 1, ie a scalar.

Let’s use this to derive the simple rule for the variance of a linear combination

of two random variables that we stated earlier, ie. var(b1X + b2Y ) = b21var(X) +

b22var(Y ) + 2b1b2cov(X,Y ).
The vector of weights in the linear combination is

a =

(
b1
b2

)
, for x =

(
X
Y

)
,

so that a′x = b1X + b2Y. The covariance matrix is

V =

(
var(X) cov(X,Y )
cov(X,Y ) var(Y )

)
.

62



Finally

var(a′x) = a′var(x)a = (b1b2)

(
var(X) cov(X,Y )
cov(X,Y ) var(Y )

)(
b1
b2

)

= [ b1var(X) + b2cov(X,Y ) b1cov(X,Y ) + b2var(Y ) ]

(
b1
b2

)
= b21var(X) + b1b2cov(X,Y ) + b2b1cov(X,Y ) + b22var(Y )

= b21var(X) + b22var(Y ) + 2b1b2cov(X,Y ).
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Part IV: Surveys of
more advanced methods
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Chapter 19

Time series and forecasting

One fundamental goal of time series analysis is to measure some properties of
time series, and then to define model classes which can mimic these properties as
closely as possible with a moderate number of parameters. Estimating a model
from one of these classes then gives an estimated representation which should behave
similarly to the underlying time series, and so the forecasts from the process should
be reasonable forecasts of the time series.

Notes:
Autocovariance at lag 1:

E[(yt − µ)(yt−1 − µ)]

..at any lag k :

E[(yt − µ)(yt−k − µ)]

... and the autocovariance function (ACVF) is the set of autocovariances at
lags 0 . . . `. The autocovariance at lag 0 is just the variance of the process. Note
that we have treated the mean as being the same for both the variable and its lag:
this is an implication of covariance stationarity. A commonly used notation for the
autocovariance function is γ(k), k = 0, . . . `.

As in cross-sectional cases, we can scale the (auto)covariance to obtain the au-
tocorrelation. At lag 1, the autocorrelation is

E[(yt − µ)(yt−1 − µ)]/σ2
y.

Notice that, in the cross sectional case, we divided by the product of the standard
deviations of the two variables, σxσy. We’re essentially doing the same here, but in

this case the two variables are the same, just measured at different points in time. If
the variable is covariance stationary, then the standard deviation of y and of its lag

are the same, and so we can just write σ2
y.

The autocorrelation at lag k is then

E[(yt − µ)(yt−k − µ)]/σ2
y,

and the autocorrelation function is the set of all autocorrelations from lag 0 (if this

is included: it’s always equal to one) to some value `. A commonly used notation

for this is ρ(k), so the ACF is ρ(k) = γ(k)/γ(0). As with a regular correlation, the

autocorrelation is bounded into the interval [−1, 1], and so is readily interpretable.
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For these definitions to be meaningful, the mean and variance of the process must
exist. This corresponds with the definition of covariance stationarity (sometimes

called ‘weak stationarity’).

Definition. A time series process is said to be covariance stationary if the first two
moments of the process, the mean and variance, exist and are constant.

Another form of stationarity is strict (or ‘strong’) stationarity:

Definition. A time series process is said to be strictly stationary if the distribution
function of the process is constant over time: F (yt) = F (yt+s) for any integer value
s.

Clearly, covariance stationarity does not imply strict stationarity: the first two
moments might exist and be constant, but the third moment (measuring skewness)
might change, violating strict stationarity. It might seem that strict stationarity
implies covariance stationarity, but this is also not true: a process might have a
constant distribution function, but the second moment might not exist, so it would
be strictly stationary but not covariance stationary.

Either definition of stationarity is violated by a process with a trend– a trending
process is tending to grow (or decline), and so its mean cannot be constant.

Forecasting

A (time series) forecasting model is a model with links the future with the past:
for example,

yt+1 = α+ γ1yt + γ2yt−1 + β1xt + β2zt + εt+1. (9.1)

(We can also use prediction models for cross-sectional cases, for example predict-
ing whether an individual’s prescription drug expenditures given a vector of observ-
able characteristics; in this case observations in a data set would normally be treated
as independent, so that there is no information in the ordering, and no ‘lagged’ values
would be relevant.)

In the case of a model such as (9.1), our forecast uses information on values of
y, x, z occuring before the date being forecast, in this case dated no later than time
t, yielding a forecast

ŷt+1 = α̂+ γ̂1yt + γ̂2yt−1 + β̂1xt + β̂2zt, (9.2)

since future values of the error term are of course unobservable.
An even simpler form of model is the pure autoregressive model:

yt+1 = α+ γ1yt + γ2yt−1 + εt+1, (9.3)
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in which the process is modelled as being a function of its own past values alone;
here we have used two lagged values (equivalently, we could write this as

yt = α+ γ1yt−1 + γ2yt−2 + εt

), meaning that we are using an autoregressive model of order 2, or an AR(2). Recall

that, in estimating this model, we will lose 2 observations (or k observations, for an

AR(k)), since the first observation would be modelled as

y1 = α+ γ1y0 + γ2y−1 + ε1

, which refers to the unobservable pre-sample values y0 and y−1. Since we can’t see
those, we have to start at observation 3, which refers only to observations 2 and 1 on
the right-hand side.

67



Chapter 20

Models of qualitative
dependent variables
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Summary of notation
and abbreviations

Abbreviations in text

e.g. L. exempli gratia: for example
et al. L. et alii: and others
etc. L. et cetera: and the others
i.e. L. id est: that is
v.i. L. vide infra: see below
v.s. L. vide supra: see above

Symbols

∀ : ‘for all’ or ‘for all values of’

Σni=1Zi : Z1 + Z2 + . . .+ Zn

Πn
i=1Zi : Z1 · Z2 · . . . · Zn
∈: ‘is an element of’

∩ : intersection (of sets)

∪ : union (of sets)
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