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Part I: Introduction



Chapter 1

Statistical reasoning

Statistical reasoning consists of more than the formal analysis of sets of data. It
allows us to improve our thinking about uncertain situations, and therefore to make
better decisions, or simply to understand better or predict better what is happening,
or will happen. It allows us to analyze common errors in reasoning that might
otherwise lead us to misunderstand uncertain situations. It also allows us to describe
and communicate better what we do know about these environments.

Sharpening our reasoning is one of the purposes of studying statistics, and we will
be trying to do so throughout this book. For now, it may be best to illustrate some
ways in which thinking about uncertain events is difficult, but where ideas described
here will help us to understand more. We will try to do this in the following examples.

First, we need to begin being clear about some terms that we will use, and in
particular the word ‘uncertainty’. We will mean by this any situation in which we
cannot predict some event perfectly, even if someone with better information could do
so (we will use the word ‘random’ similarly; a formal definition of a random variable

will be given in Chapter 6). For example, imagine that you lend your car to friends
to drive to Florida. You receive an e-mail from South Carolina saying that no one
is hurt but...there has been an accident. If your car is not fully insured for collision
damage, then the extent of your loss is uncertain; there may be no uncertainty for
your friends, but there is for you. Notice that the uncertainty reflects your lack of
information about the situation, not some inherent property of the world; what has
happened to your car is already determined and may be known to others. If your car

is insured for collision with a deductible of $1000,1 then your uncertainty is reduced;
any loss over $1000 will be paid for, and your maximum loss is the $1000, but may
be less. We describe both of these as situations of uncertainty; the existence of some
predictable component does not change the fact that the outcome is uncertain–it is
not completely predictable. This use of the word ‘uncertainty’ is compatible with the
distinction often made by economists, following Frank Knight (1921), between ‘risk’

1A deductible is an amount which is deducted by the insurer from a claim settlement.
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and ‘uncertainty’, which we will be able to understand later when we have introduced
some formal methods.

The formal study of statistics began with gambling problems, so let us do like-
wise.

Example 1: Returns from casino gambling or lotteries.

Anyone who gambles in casinos (unless engaging in what the casino would con-

sider cheating, including card-memorization methods) would, if they persisted long

enough, eventually be a net loser.2 Of course, in a few rare cases where a person gets
a very lucky start, he or she might need to live far longer than a human lifespan for
this to happen, but eventually losses would swamp any gains. The same is true of
lottery ticket buyers, although again in the rare case of someone who wins millions,
it’s true that a lifespan of many thousands of years of weekly lottery purchases might
be necessary to end up a net loser. Nonetheless, weak laws of large numbers (v.i.

Chapter 12) tell us that this will be the eventual result, and for most people it shows
up sooner rather than later. The proliferation of casinos suggests that this point is
not widely appreciated.

If a large number of people are playing a particular game of chance, we can
also use statistics to give a good estimate of the proportion of them who will be net
losers after playing any given number of times (again, see Chapter 12); the previous
paragraph implies that this proportion will get ever closer to one as the number of
rounds increases.

Example 2: Using information in uncertain situations.

The famous Monty Hall puzzle illustrates the fact that, even though we are in
an uncertain situation, we may be able to use imperfect information to improve our
chances of getting a desired outcome.

This puzzle is named for the host, Monty Hall, of a game show (‘Let’s Make a

Deal’), played roughly as follows.3 There are three closed doors, behind one of which

is a valuable prize (e.g. a car), and behind two of which are approximately-valueless
prizes. The contestant picks a door, which remains closed. The host, who knows
where the prize is, opens one of the doors containing the low-value items. He then
offers the contestant the chance to switch her choice to the remaining unopened door,
or to stay with her initial choice.

Since the prize could be behind either remaining door, it often seems that the
chances are equal of winning with either door. But this is not so. Contestants who
switch are in effect exploiting the information revealed when the host opened a door;

2In a casino or lottery, a certain proportion of the bet goes to the casino or lottery

organizer each time, so the bet is not a fair gamble: see Chapter 5.
3You can watch old segments at www.letsmakeadeal.com , but it would be more

instructive to go to lectures.
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they win 2
3 of the time. Those who do not switch do not exploit this information,

and win only 1
3 of the time. (A weak law of large numbers, as mentioned above,

implies that in many repeated plays of this game, the actual observed proportion

of the games in which the switchers win will get arbitrarily close to 2
3 , whereas the

observed proportion of the games that non-switchers win will get arbitrarily close to
1
3 .) To see why, we need to study probability; this example will be treated in Chapter

5.

Example 3: Description

Here is a set of numbers (which we will write down only to two decimal places

of precision):

7.94 1.88 7.35 0.74 0.79 6.63 3.15 9.50 3.91 2.26
0.91 1.31 0.85 3.37 4.20 1.77 0.22 0.91 1.00 2.10
1.05 2.23 0.99 0.53 10.26 5.42 3.22 2.91 1.83 0.56
2.70 0.65 0.43 2.78 1.55 2.29 3.08 2.03 0.53 4.63
7.15 2.45 4.28 2.75 0.20 2.32 0.72 2.30 2.29 1.85
0.88 3.09 0.94 1.61 0.99 2.21 2.22 1.37 1.89 1.03
0.75 1.95 3.92 1.09 3.14 1.80 0.80 6.46 2.56 2.27
5.52 4.39 7.26 9.88 0.24 0.15 1.41 2.46 1.44 0.96
3.28 0.63 1.32 0.75 1.63 1.27 7.45 0.52 5.81 5.09
0.51 3.26 6.05 0.85 4.19 2.66 0.27 1.25 5.79 4.10
0.39 0.70 1.29 0.87 2.26 6.76 1.63 1.19 3.33 3.34
0.92 7.00 0.40 1.61 0.58 1.39 7.33 3.45 0.27 3.08
3.41 1.06 2.41 1.72 6.16 4.82 0.20 1.23 0.62 3.64
0.31 1.98 1.46 5.30 1.04 0.37 3.30 6.57 8.36 0.76
1.73 0.58 2.43 0.54 4.35 1.66 0.79 5.49 1.17 1.10
4.36 0.91 0.68 0.75 0.48 3.79 0.29 0.57 6.38 2.10
0.96 2.84 4.22 1.29 2.26 10.68 0.46 1.79 1.95 0.49
5.10 1.70 1.15 2.40 1.22 5.10 4.34 3.21 0.62 1.30
0.93 6.08 4.10 0.09 5.74 2.43 3.69 1.95 0.95 1.98
4.52 1.62 2.20 3.53 1.17 0.44 0.77 4.65 0.65 4.02

You might be in a position where you expect to see more numbers representing
the same thing, and you would like to be able to describe the set and any patterns
that you can find. What might you have said about these numbers before studying
statistics? Perhaps that they are all positive, almost all (not literally all) between
zero and ten, or that values less than three seem to be particularly frequent. This
could be useful, but it would be much more revealing to be able to present the density
(Chapter 6) of these data, which can be estimated as follows.

Figure 1.1
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Estimated density, first set of numbers

Ranges of observation where the density is high are relatively likely to occur; we
can see from this density that, for example, the most likely range for an observation
is somewhere between one and two. Chapter 13 describes how to obtain an estimated

density function like this. These data were actually generated from a χ2
3 distribu-

tion (Chapter 9). The wavy part of this estimated density for observation values
above about five does not occur in the true density; Chapter 13 explains why this
occurs here and how more observations would solve the problem. We could also (or

instead) measure properties of these numbers that would tell us in numerical (rather

than graphical) form about the location, dispersion, asymmetry, relative frequency
of extreme events, and so on: Chapter 3 begins this subject.

Example 4: Learning from samples

Learning to distinguish genuine differences between measured quantities from
random variation that is of no significance is a core element of statistical reasoning.

We are often presented with survey results which purport to show differences
between groups or types of people, or differences over time, or samples which suggest
other distinctions between two or more classes of item. A survey of 200 people (100

men and 100 women), for example, finds that 21% of men are smokers, and 24% of

women. A survey of consumer confidence with 200 subjects suggests that 60% of
consumers were optimistic in May, while a similar survey in June suggests only 58%
were optimistic.

Is it really true that more women smoke than men? Did consumer confidence
really drop in June? Maybe, but we can’t tell from these surveys. Think for a minute
of flipping a coin, where each flip is like one point in a sample of a coin’s tendency

4



toward the head or tail. Even if we know that the coin will fall on each side half
the time, we know that in 100 repetitions of the experiment, we might well get, for
example, 46 heads and 54 tails; if we do it again we might get 52 heads and 48
tails. Our sample will not reproduce exactly the true probabilities. Our samples of
male and female smokers, or of consumers in May and consumers in June, might
differ simply for this reason: random variation. Alternatively, there could be genuine
differences. How many people would we really need to survey to be quite confident
that differences like these are genuine? Part III of this book will help us to work this
out; moreover, the methods described there will allow us to put a precise numerical
measure on our degree of confidence: rather than being quite confident, we may be
able to say that we are 95 or 98% confident.

Example 5: Memory in random processes

Consider the following statements:

i. This coin has come up tails four times in a row. We’re due for a change; the
next one will probably be heads.

ii. It’s been unusually hot for two days. It will probably be hotter than usual again
tomorrow.

iii. It’s been unusually hot for two days. It will probably be cooler than usual
tomorrow.

iv. The Canadiens are on a hot streak–they’ve won the last four games. So they’ll
probably beat Boston tonight.

v. The stock market has been down for the last three days, so it will probably be
up today.

vi. The stock market has been very volatile for the last three days, so prices will
probably continue to move around a lot today.

Each of these statements makes a prediction of the future of some process based
on its past. Sometimes this can be done, and sometimes not.

Statement i is invalid, and in fact is an example of what is sometimes called
the Gambler’s fallacy, sometimes the Monte Carlo fallacy. The coin has no memory;
what happened in the last few throws has nothing to do with what it will do next.
Each new flip is independent (in a sense that will be made precise later; Chapter 5)
of past ones. The fact that in a large number of trials the proportion of heads must
come to 50% in a fair coin often leads people to think along the lines of statement
1, on the grounds that heads will have to be offset by later tails to get to 50%. But
this is not quite what happens; see Chapters 11 and 12.

Either (not both of course) of statements ii and iii could be true; the weather
is related to the weather in the recent past. Which, if either, of them is true is an
empirical question, not something that we can work out by reasoning alone. In fact
it’s ii that’s true; unusual temperatures do tend to have some positive persistence.
Of course, statement ii simply says that relatively high temperatures are probable,
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not certain, following relatively high temperatures the previous day; there are plenty
of occasions when a new front passes through and the weather changes.

Statement iv is a kind of statement that we hear often, and which could in
principle be true or false. It is a relatively tricky one to think about. What is
meant by a ‘hot streak’? If, as here, it is used to mean something that has predictive
power for the future, then it must mean that the team is in some condition that makes
winning more likely than usual, not simply that they actually did win several games in
a row. A coin could not be said to be on a hot streak in this sense: we know that three
heads in a row does not make a fourth head more likely–it’s still 50/50. Is a hockey

team’s hot streak just like that, or does it actually enter into phases (no injuries,

players feeling happy, unpopular coach just fired, salary increases all around...) in
which winning is more likely than usual? The author does not know the answer.
The question has been studied in various sports, however. Note that statement iv
goes further and says that, because of this supposed hot streak, beating Boston is
likely; to evaluate this statement, we would have to know how likely it normally is
that Montreal would beat Boston, how much that probability has changed (if at all)
in this ‘streak’, and what the new probability of beating Boston is. These things
can all be estimated, but involve us in estimation of unconditional and conditional
probabilities, which will use methods presented in a number of later chapters.

Statements v and vi are again things that could be true or false (because, unlike
the coin-flipping case, we don’t know exactly what the mechanism is for changes in
stock prices, so we can’t be sure a priori what the right answer is). In fact, daily
changes in stock prices are at least close to being unpredictable from past changes.
This is probably not literally true, but a great deal of statistical research in financial
data suggests that it is at least a very good approximation for most purposes. So
leaving aside the approximation, statement v is false. (If we had been talking about
changes in a stock’s price in the last few seconds, however, a statement related to v
might be true; statistical tests of relations between changes over very short periods
do often find evidence of some relation.) Statement vi, however, is true. While
stock market price changes themselves are approximately unpredictable, periods of
relatively large changes tend to be persistent: we will see an example in some data
in Chapter 20.

Working out whether statements such as these are true typically requires a mix-
ture of a priori reasoning and the careful statistical analysis of data. Although these
cases all remain uncertain, we find that in some instances we can make useful state-
ments about what is likely to happen.

Example 6: Association

We are very often interested in whether or not two (or more) different variables
are related in some way: whether they tend to move together, or opposite; whether
one causes another; whether they share the same trend although they may move apart
in the short term. As in Example 3 (sampling), we may see samples in which two
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variables appear to be associated, but is this genuine, or random variation? Chapters
15-16 describe how we can test this.

A well-known financial example is the apparent association between a Super
Bowl victory by a team from the original National Football League (as opposed to

a team from the pre-merger American Football League) and an increase in the Dow
Jones Industrial Average for the rest of the year. Both of these are binary variables–
they take on only two values (up or down for the Dow Jones, yes or no for a win by an

original NFL team; we could record these numerically as zero or one).4 Establishing
whether or not this association really exists brings us to problems related to data
mining, including the paradoxical point that the probability of finding an association
in a statistical test on a given data set will depend on whether the data were known
when the hypothesis was formulated: Chapter 15. In this case it’s hard to imagine
that the association could be genuine, let alone causal, although some people have
been tempted to take a victory by an NFC team as a ‘buy’ signal (remember, of

course, that the DJIA goes up most years anyway).

Apart from this problem of hypotheses suggested by data and ‘tested’ on the
same data, we can measure the association between two variables easily (Chapter 8).

But learning about causation (in general, and in particular from non-experimental

statistical data) is, as David Hume (1739, 1748) famously argued, something that
we can only do imperfectly and tentatively. This is an area where, once attuned to
the problem, you will spot many examples of fallacious statements in second-hand
accounts of research (and sometimes in the research itself) as well as in conversation;
we will give specific examples below. The next section elaborates further on this.

Example 7: Conditional association

It is very often the case the two variables are associated, but not because there is
any genuine affective one on the other. Instead, both of the variables may be related
to some other underlying factor.

Consider the following example. A study is made of the health of male and female
professors in economics departments in universities. Measures of health which are
not gender specific, such as perhaps deviation of blood pressure from some optimum
value or oxygen uptake per kilogram of body mass, are recorded for each person in the
sample. When the results are collated and analyzed, it is found that there is a strong
negative association between being male and having good measures of health: the
men are much less healthy than the women. Policies are proposed to address health
information specifically to male academics, studies are recommended to investigate
the causes of academic male ill health, and so on. What’s wrong with this?

The existence of some association would probably be genuine in this case. But
among other things, there is a problem and assuming that this association arises

4The Dow Jones Industrial Average and related indices are described at the site www.

djindexes.com.
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because of some direct relationship. Instead, the following mechanism may be at
work: women have been taking PhD’s and entering academic work in much larger
numbers in recent years; in most academic fields the proportion of men among the
oldest faculty members (those hired, say, 40 years ago) is much higher than the

proportion of men among the youngest (typically those hired most recently). This
is especially true in economics, at the time of writing. Therefore, the male faculty
members will typically be on average older. An association between being male and
having poor health would be produced simply by the fact that older people (at least

within the relevant age ranges) tend to have poorer health. By looking at the health
of men and women in groups where the average ages are different, we may be misled
in attributing to gender and effect is in fact a result of age. There is an association
between being male and having poor health, in this example, but the association
conditional on taking account of age may well be zero. It is typically this conditional
association that interests us, and not the unconditional Association: we want to
remove the effects of other variables, and concentrate on the effect of one particular
thing.

A simple way to deal with this problem would be to look at our sample by
different ages; if we have a sufficiently large sample size we could consider all of the
65-year-old professors and ask whether men and women do equally well on health
measures, all of the 64-year-old professors, all of the 63-year-old professors, and so
on. We might find that within each age category, there is no difference in typical
health measures of men and women: there is no association, conditional on age. The
overall (unconditional) association between being male and having poor health is
nonetheless a fact in samples of this type; it’s simply not the fact that’s relevant to
us if we’re trying to figure out whether academic men are on average less healthy
than academic women.

Even if we do classify our data points by age as just suggested, this may not
be sufficient: there may be other variables that we would want to ‘condition on’.
But what we really need is statistical technique that allows us to condition on a large
number of variables, that is, remove their effects and ask whether there is a remaining
component to the association once those effects have been accounted for. This is one
of the things that regression methods, and related methods, attempt to do, and is
one of the main objects of interest in the related field of econometrics.

Notice that this entire problem is arising because we have to deal with non-
experimental data. In an ideal controlled experiment, one changes a single quantity
keeping everything else constant, and observes the effect on an outcome. It is in gen-
eral impossible for us to do this in the social sciences, including economics, although
there is a field of experimental economics in which experiments are conducted on
consenting subjects. A great deal of statistical and econometric technique is there-
fore devoted to trying to ‘net out’, or control for, the effects of numerous variables
that we cannot hold constant. For example, in the present problem, in order to run
a controlled experiment holding all other factors constant, we would have to take
samples of male and female professors and ensure that their lives are identical in all
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respects that could possibly be relevant to their health, leaving no difference between
the two groups except gender. Good luck.

Example 8: Prediction

Here is another set of numbers reported to two decimal places of precision:

-0.79 -0.81 -0.48 -0.87 -0.31 0.01 0.79 -0.46 -0.35 -0.49
0.95 -0.39 -0.75 -0.02 -0.08 -0.16 -0.67 -0.78 -0.82 -0.51
0.89 0.83 -0.69 -0.43 0.93 -0.65 0.27 0.13 0.30 0.21
0.28 0.27 0.71 0.23 0.96 -0.98 0.88 -0.58 -0.41 -0.18
0.85 -0.80 0.26 -0.48 0.19 0.49 0.93 0.56 -0.78 0.38
-0.71 0.24 0.01 0.99 0.94 -0.24 0.67 -0.57 -0.07 0.12
-0.85 0.35 0.19 -0.08 0.79 -0.01 0.77 -0.71 0.61 0.07
-0.28 -0.52 0.41 0.45 -0.94 0.16 0.03 0.19 0.47 0.69
0.20 -0.96 0.71 0.71 -0.41 0.44 -0.57 -0.53 0.36 -0.12
0.29 0.25 0.78 0.23 -0.87 0.91 -0.85 -0.99 0.81 0.37

You need to make the best possible prediction of the next number in this sequence
(the 100 numbers are ordered like words on a page, so that for example the last two

are 0.81 and 0.37). By ‘best possible’, we will not mean getting the right answer each
time; in practical problems, that will be impossible. Instead we will mean that you
should follow a prediction rule that will lead to the lowest value of a loss function
(a measure of the ‘badness’ of your predictions) in repeated forecasts. For this set
of numbers and for standard, symmetric loss functions, the best prediction that you
can make here is zero each time. This may sound strange, but it reflects the fact that
the past values do not contain any useful information; see Chapter 20.

Here is another set of numbers.

-0.04 -1.05 -0.04 -0.82 -0.97 -0.87 -0.06 -0.16 -0.38 -0.84
-1.01 -1.54 -1.24 -1.62 -1.13 -0.31 -0.46 0.16 -0.62 -0.40
-0.59 0.34 -0.65 0.42 -0.65 -0.25 -1.24 -1.40 -0.84 -1.29
-0.44 0.02 -0.31 0.68 0.43 0.89 -0.24 -0.32 -0.46 -0.50
0.63 0.86 1.17 0.78 0.04 0.39 -0.68 -0.69 0.25 -0.27
-0.05 0.03 0.63 0.87 1.56 0.91 0.78 0.90 0.99 1.26
1.24 0.51 -0.10 0.76 0.28 -0.36 -0.49 -0.99 0.21 -0.73
-0.39 0.08 0.38 0.02 0.61 0.93 -0.27 0.06 -0.26 -0.91
-1.08 0.08 -0.32 0.50 -0.01 -0.85 -0.35 -1.23 -0.54 0.17
-0.53 -0.59 -0.66 -0.24 -1.19 -1.58 -0.28 0.25 0.58 -0.43

This process has some ‘memory’ which can be exploited, so we can use past
values in making a prediction. (How would we find this out? Chapter 20.) Here, the

prediction rule that will do best by standard loss functions (for example, the sum of
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squared prediction errors or of absolute prediction errors) is to predict that the next
value will be 0.5 × the last, plus 0.2 × the second last. How would you work out a
rule like this? Again, see Chapter 20.

These examples are intended to illustrate the point that there is much more to be
gained from an understanding of statistics than just an ability to generate numbers
by applying statistical programs to data. But we of course also want to generate
useful numbers. First, we will look at the kinds of data that will occur in economic
and financial contexts, and at a few things that it will be useful to understand before
we begin to compute any statistics.
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Chapter 2

Economic and financial data

Before beginning to learn about computing statistics, it will be useful to know
something about the kinds of data that we will meet, and how different algebraic
transformations that we can apply to them can produce new data series with different
properties and can reveal different features of the original data series.

2.1 Graphical representations of data

One way to classify economic and financial data sets is as containing time series,
cross sectional, or panel data. In a time series, the data are ordered (usually with a

historical date attached); the order cannot be changed without changing the meaning

of the time series. A cross section is a sample of units (such as people, firms, countries,

and so on), and in general does not have any ordering that needs to be retained for
statistical analysis. A panel combines both time series and cross sectional dimensions
by following particular units through time, so that we have a set of units, each of
which is observed or sampled at various points in time.

Time series data
We begin by considering data which come in an ordered sequence of observa-

tions made at different (usually equally-spaced) points in time, which typically arise
in macroeconomics, finance, international economics, monetary economics, and so
on. Figure 2.1.1 illustrates such a time series, the exchange rate between Canadian
and U.S. dollars, recorded each month from the beginning of 1971. Monthly data
may represent a single observation from a month (usually the beginning or end), or
some combination of values at points within the month; in this case each monthly

observation is constructed as an average of daily (12 noon) quotations.5

5These data come from the FRED (Federal Reserve Economic Data) data set main-

tained by the Federal Reserve Bank of St. Louis, and available at http://
research.stlouisfed.org. We will use a number of data series from FRED in this

chapter.
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Although this graphic is straightforward to interpret, it is much more common
to represent the data with an unbroken line, as in Figure 2.1.2. Although the data
are in fact measured at monthly intervals rather than continuously, the continuous
line sometimes makes a graph easier to read, particularly relative to one with small
symbols. The line also suggests (correctly, here) that there is a progression from one
point to the next along the line; in a data set with no meaningful order, this could be
misleading. We will, as is common, generally use this form for plotting time series.
We need to bear in mind however that the data behind the graph are not continuous,
and that the graph smooths out the variation within the month.

Figure 2.1.1
Canadian dollar / US dollar exchange rate,

$C per $US, monthly average of noon rates
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Figure 2.1.2
Canadian dollar / US dollar exchange rate,

$C per $US, monthly average of noon rates

In fact, as in Figure 2.1.3, we can plot the daily data instead of monthly average;
we see that the broad pattern is of course the same, but in Figure 2.1.3 the variation
within the month is more visible. However, with 8851 points plotted, the resolution
of the figure on the page is now not adequate to capture all of the information in
the time series, and the result is a line which appears thicker in places as the daily
variation is squeezed into a small space (if we plotted the daily data of Figure 2.1.3
with individual symbols instead of a line, it would be very crowded, to the point where
our sequence of points would begin to resemble a line in any event). Nonetheless,
we can see some of the extra intra-month variability which is smoothed out in the
monthly data.
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Figure 2.1.3
Canadian dollar / US dollar exchange rate,

$C per $US, daily noon rate

Note that while the data behind Figures 2.1.1 and 2.1.2 are measured at a lower
frequency than those yielding Figure 2.1.3, each series represents measurements on
the same underlying economic process (currency exchange between Canada and the

U.S.).

Cross-sectional data
Although cross-sectional data may have no single correct ordering, it can be

useful nonetheless to plot points from the data set; the relative magnitudes of different
observations on a variable may be perceived much more quickly than by inspecting a
table of numbers. Figure 2.1.4a plots Gross Domestic Product per capita in the year
2000 in a cross-sectional sample of 96 countries taken from the Penn World Tables,

and ordered alphabetically.6

6These data are available at http://pwt.econ.upenn.edu ; see Heston et al. (2002)

for a description.
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Figure 2.1.4a
GDP per capita in a sample of 96 countries, year 2000

Thousands of US dollars (Penn World Data)

We see immediately many countries with low income, a smaller stratum of rel-
atively high income countries with GDP around $25,000 US dollars per capita, and
one substantially higher value near the middle of the set (Luxembourg, with annual

per capita GDP of nearly $45,000 per capita in 2000). This set of data is not a
random sampling of all countries, however, and fails in various ways to provide an
accurate picture of the dispersion of national incomes on this planet. In particular,
the countries selected are those for which a complete set of data on real GDP per
capita was available over the years 1960-2000 inclusive. Richer, developed countries
tend to have much better data collection, and so this set includes virtually all devel-
oped countries, but excludes many poor, less-developed countries. (If we insisted on
data available from 1950, we would lose further countries from this sample–almost
all of which would be poorer countries along the bottom of the figure.) As well, this
figure gives equal visual weight to large countries such as the US and small countries
such as Luxembourg: in some presentations of data such as these, the figure is instead
constructed to use a size of circle which is proportional to population size in each
country, to give a better idea of typical outcomes for individuals on this planet.

A cross-sectional example from using data related to economic development is
plotted in Figure 2.1.4b, where we have data on individuals’ incomes from the 1991

Peruvian Living Standards Survey.7

7The Peruvian Living Standards Survey is one of the World Bank’s Living Standards

Measurement surveys.
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The part of this data set represented here comprises information on 423 house-
holds in rural Peru, for which a number of quantities in addition to income are
measured, including number of individuals in the household, educational attainment
of the head of household, number of male and female children, and other variables.
Since these data points have no unique ordering, and since a number of variables are
present in the data set, it is sensible to plot pairs of variables rather than the set of
423 incomes in a random ordering. In Figure 2.1.4b we plot income against years
of education of the head of household. Note that Figure 2.1.4b tells us about both
income and years of education of the household head; the reason that the points are
in a set of vertical lines is that schooling is only measured to integer numbers of years,
so no points can occur between integers on the lower axis.

Figure 2.1.4b
Household income by educational attainment of head

Peruvian Living Standards Survey

Panel data

The distinguishing feature of a panel of data is that it combines both time
series and cross sectional data on a particular variable (although the word ‘panel’
is sometimes used loosely to describe a data set with a number of time series on
different variables, this is not the technical sense that we want to distinguish, in
which we have two dimensions recorded on the same variable). A panel of survey
data might, for example, consist of observations over twelve years on 800 individuals,
each of whom reports his or her income, employment status, years of completed
education, marital status, number of children, and so on. Panels of this type (such
as the US Panel Survey of Income Dynamics, PSID, or Canadian Survey of Labour
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and Income Dynamics, SLID)8 are called ‘balanced’ if the same individuals are in
the sample at each observation date. In surveys of human beings, inevitably some
individuals drop out of the survey over time, leaving a smaller part of the panel
that remains balanced. Another example is given in Figure 2.1.5, which plots real
GDP per capita, in thousands of year-2000 US dollars, for the sample of 96 countries
mentioned above but over the full set of years 1960-2000 (note that the origin of the
figure is at the bottom right corner, so that time advances from right to left in this
figure).

Figure 2.1.5
Real GDP per capita, 96 countries, years 1960–2000

Thousands of year-2000 US dollars (Penn World Data)

This figure is difficult to read. It is clear that there is a great deal of variability,
but the lower-income countries’ time series are obscured behind those of the higher-
income countries. If we change the ordering of the cross-sectional dimension of the
data from the alphabetical to an ordering by output in the last year of the sample,
the range of time paths is easier to see, as in Figure 2.1.6:

8See http://psidonline.isr.umich.edu and http://www.statcan.ca/english/sdds

/3889.htm respectively.
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Figure 2.1.6
Real GDP per capita, 96 countries, years 1960–2000, sorted

Thousands of year-2000 US dollars (Penn World Data)

We now see more clearly both the wide range of different incomes across coun-
tries, and the fact that there is a large set of low-income countries which remained
low-income over this period. If we wish to concentrate on growth per se, however,
rather than the absolute levels of income, it may be useful to re-scale the data to a
common starting point, so that the graphic reflects proportionate growth rather than
absolute levels. Figure 2.1.7 does so, by dividing each country’s individual time series
of output by the value in the first year, 1960. Each country’s time series therefore
begins at 1, and the figure comprises a set of lines which diverge from this starting
point to values generally, but not always, above 1 by the end of the sample. A final
value of 3.0, for instance, then indicates that the country’s real per capita GDP grew
by a factor of 3, or by 200%, over the time period. The lines which end at the highest
points, near 8 and 10 respectively, are those for the fastest-growing countries (Hong

Kong and South Korea), not those with the highest absolute output levels.
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Figure 2.1.7
Real GDP per capita, 96 countries, years 1960–2000, scaled (1960=1)

Thousands of year-2000 US dollars (Penn World Data)

Figure 2.1.7 is again difficult to read because the more slowly-growing countries
are obscured. We can again choose an ordering to make the figure easier to inspect,
and order by the ratio of real per capita GDP in 2000 to that of 1960, to get Figure
2.1.8.
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Figure 2.1.8
Real GDP per capita, 96 countries, years 1960–2000, scaled & sorted

Thousands of year-2000 US dollars (Penn World Data)

We can see from the left side of Figure 2.1.8 that a number of less-developed
countries experienced growth, followed by decline, in output; some ended the period
with lower real per-capita GDP than in 1960.

2.2 Transformations of data series

At times it is easier to understand some properties of a data series by doing
some simple calculations before graphing the data. We begin by looking at some
of the transformations common in time series data, for which transformations are
often particularly useful. Consider first of all one of the best-known economic time
series, Gross Domestic Product (GDP) of the United States, a measure of total
output of the US economy. Figure 2.2.1 plots this quantity, measured every three

months (one quarter) from 1947 through 2005.9 This series looks very smooth and

regular. Recessions (periods of decline in output) are hardly visible in the context of
the regular overall trend. In fact, this time series almost resembles a deterministic
function such as

yt = α(1 + β)t, (2.1)

9These data also come from the FRED data base through the Federal Reserve Bank
of St. Louis; the original source is the Bureau of Economic Analysis of the US Bureau

of Commerce.
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where t is a discrete index representing time, for example t = 1, 2, 3, . . . . This function
grows by the factor (1 + β) each time the time index advances by 1, so that for, e.g.

β = 0.02, y grows by 2% each period. This constant percentage growth implies
that the absolute growth in the series is constantly rising, so that changes near the
beginning of the time series come to seem trivial when plotted together with later
values. This effect is obscured in these data since percentage changes near the end
of the sample have tended to be smaller; in stock price data (v.i. Figures 2.2.7 and

2.2.8), it will be easy to see.

Figure 2.2.1
US gross domestic product

billions of dollars, seasonally adjusted

There are several algebraic transformations that are commonly applied to series
such as GDP to reveal features that may be obscured in the ‘raw’ (unprocessed, or

un-transformed) data. The first transformation recognizes that GDP measured in
constant dollars may be misleading for some purposes, since the value of a dollar
has fallen substantially over this historical period (i.e., there has been substantial

inflation). To adjust for this, we divide the nominal (measured in currency) GDP
series by a price index, in this case a GDP deflator, which is designed to account for
the changing value of the currency. The result is a real measure of the output of the
economy, intended to remove the effect of inflation and to reveal more clearly the
capacity of the economy to produce goods and services. Figure 2.2.2 plots this time
series. While growth in the real measure is less dramatic, the same feature is visible
as in Figure 2.2.1: real GDP has tended to follow an upward curve, reflecting growth
which is closer to being constant in percentage terms than in absolute terms (which
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would produce a straight line). Changes near the beginning of the series continue to
be obscured by their small absolute size relative to later values of the series.

Figure 2.2.2
US real gross domestic product

billions of (chained) 2000 dollars, seasonally adjusted

To understand how this is routinely handled, take the logarithm of the function
(2.1) (the logarithmic function is reviewed in the appendix to this chapter). If yt =

α(1 + β)t then

log(yt) = log(α(1 + β)t) = log(α) + t · log(1 + β), (2.2)

using the properties of the logarithmic function given in the appendix. Note that
when the index t increases by 1, log(y) increases by addition of log(1 + β) rather

than by a multiplicative term of (1 + β), as was the case with untransformed yt.

That is, taking the logarithm of (2.1) has turned a case of constant proportional or

percentage growth into one of constant absolute growth. Moreover, log(1+β) ' β for

small values of β, so that log(yt) increases by roughly β each time the index advances

by 1. (Again, see the appendix for an explanation of this property.)

Figures 2.2.3 and 2.2.4 plot the logarithms of US GDP and real GDP respectively
(equivalent to plotting the original series on a logarithmic scale). The two series are

now closer to being straight lines than exponential curves (although the nominal
series, Figure 2.2.3, does grow more quickly in the 1970’s and early 1980’s, reflecting
the high inflation rates at that time), and percentage changes at the beginning of the
sample are now on a visual ‘level playing field’ relative to those at the end: a fall of
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5% at the beginning of the sample will show up as the same distance on this graph
whether it occurs near the beginning, where absolute numbers are lower, or at the
end.

Figure 2.2.3
logarithm of US gross domestic product

seasonally adjusted

Figure 2.2.4
logarithm of US real gross domestic product

seasonally adjusted

A final transformation that is commonly applied has a more dramatic effect.
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Consider the change between two neighbouring points,

log(yt)− log(yt−1) = log(1 + β), (2.3)

by (2.2). As we noted earlier, this is approximately equal to β for small values of
β. So the difference between neighbouring values of the logarithm of this function
is approximately equal to the one-period proportional change. We usually use the
symbol ‘∆’ for the change, so ∆log(yt) ' β. Since this relationship is not exact, it is
usually preferable to compute the proportionate change directly, however, as

yt − yt−1

yt−1
. (2.4)

To compare these two computations, note that ∆log(yt) = log(yt) − log(yt−1) =

log( yt
yt−1

); for growth by the proportion β (100 β %), yt
yt−1

= 1 + β, and so yt−yt−1

yt−1
=

yt
yt−1
− 1 = β. By contrast, ∆log(yt) = log(1 + β) ' β, but log(1 + β) is not exactly

equal to β unless β = 0. If the aim is to compute the true proportionate growth rate
each period, equation (2.4) gives the exact growth rate, and (2.3) the approximation.

Equation (2.4) gives the transformation represented in Figures 2.2.5 and 2.2.6,
again for nominal and real US GDP respectively; if we had instead used the difference
in logarithms, by (2.3), the resulting figures would be hard to distinguish visually
except at a few points. We now see much more detail in the fluctuations of GDP
than was apparent in any of the previous figures, although the same information was
present in another form in the earlier figures.

Figure 2.2.5
Proportionate change in US gross domestic product

seasonally adjusted
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Figure 2.2.6
Proportionate change in US real gross domestic product

seasonally adjusted

Notice that measured output growth has tended to fluctuate less over time.
The various sequences of observations plotted in Figures 2.2.1–2.2.6 all represent

different time series, although they are all based on the series of measurements of
US GDP. These series have very different properties, which may be important in
analyzing data of this (time series) type. Chapters 18 and 20 emphasize a number
of these differences, and ways in which data of these types may be much trickier to
analyze than non-time-dependent samples.

Before we leave this topic, we noted above that changes near the beginning of a
time series tend to be obscured in a sample for which proportionate growth, rather
than absolute growth, is stable over time. Consider the Dow Jones Industrial Index
over the years 1915 through 2005, in Figure 2.2.7, and the logarithmic transformation
of this series, Figure 2.2.8. In the raw data of 2.2.7, the speculative boom through
mid-1929 (3 September 1929, 381.2) and the long decline to the bottom during the

depths of the Depression in 1932 (8 July 1932, 41.2: a decline of 89%) appear as a
small blip; this is because the absolute decline of 340 points from peak to trough is
small in the context of recent index values. In the logarithm of the data plotted in
2.2.8 this period shows up, as it should, very clearly.
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Figure 2.2.7
Dow Jones Industrial Average

Figure 2.2.8
logarithm of Dow Jones Industrial Average

Data transformations usually play a smaller role in cross-sectional data (or the

cross-sectional dimension of a panel); the individual observations are usually in some
sense directly comparable, unlike time series observations which are made at different
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points with different price levels, and so on. Nonetheless, particularly for visual pre-
sentation, some transformation may be convenient. For example, a graph depicting
the incomes of different individuals may be difficult to read if there is one extremely
high income person in the sample; other individuals’ data points will be concentrated
near zero on a scale wide enough to accommodate an income of, say, $5 million per
year. In this case, a logarithmic transformation of the income data may be visually
useful.

2.3 Some data sources

The quality and variety of some types of economic data have improved dramati-
cally as electronic recording and storage of large numbers of observations have become
routine. Many types of data, however, must still be collected manually, by survey.
Some data are also recorded experimentally, using voluntary subjects in laboratories.
Financial data

Financial data, particularly concerning asset prices (and related transformations

such as rates of return) are among the highest-quality data available. For many assets
traded on major exchanges, each transaction is recorded with time, date, and other
associated information. Regularly-spaced samples from the data, for example daily
closing prices of companies’ shares, or hourly mid-market exchange rate quotations,
are often available in reasonably long historical time series. While these data are gen-
erally very precise (that is, recorded to several significant digits) and accurate (that

is, free of errors), errors and omissions do arise because of occasional system failures,

or other anomalies.10 Data on interest rates (rates of return on bonds of different

types), exchange rates, commodity prices, options and other derivative contracts are

of similar quality. Note however that some assets (e.g. gold, US dollars) trade on
more than one exchange, and that arbitrage keeps prices similar but not identical on
different exchanges. The price of gold as traded on the London Bullion Market, the
Chicago Board of Trade and the New York Mercantile Exchange is not exactly the
same thing even if transacted in a common currency. There is no unique time series
giving the price of gold. But the U.S. dollar price time series on London, Chicago
and New York exchanges will only differ by small amounts.

Financial data may also describe cross-sectional samples of properties of firms or
households. Data such as these will generally be obtained by survey, are subject to
substantial reporting or recording error, and will generally have neither the precision
nor the accuracy of high-quality asset price data. Nonetheless such data may contain
a great deal of information.
Macroeconomic data

Macroeconomic data come from a variety of sources, but apart from cases where
they overlap with financial data (exchange rates and interest rates, for example) and

10For example, the daily closing Dow Jones Industrial Average data recorded in
Figure 2.2.7 were put together from two sources; one of the sources was missing an
observation in 2004, while the other was a shorter time series. Data from the two

were checked against each other and spliced to obtain the long time series.

27



so are recorded in asset markets, macroeconomic data are typically obtained from
surveys or administrative sources. A number of the most interesting data series, such
as those pertaining to national income or output (gross domestic product, industrial

production) are obtained by responses of private enterprises to survey questionnaires,
which are used to estimate an overall output measure for the economy. These data
are usually revised at least twice following the initial estimate, and the revisions
are substantial relative to the fluctuations in the series themselves. Figure xxxx
shows a sequence of initial, first revision, and final revision estimates of US GDP;
while the final estimates are probably the most accurate, it is clear that substantial
measurement error in this series is inevitable. Estimates of the unemployment rate,
consumer (and other) price levels, money supply, and numerous other series are
subject to similar considerations.

Some data, such as new unemployment insurance claims, do not come from sur-
veys but from recording of individuals’ direct dealings with governments. While still
subject to error, such data series at least attempt to record every relevant observation
rather than using surveys of a subset of relevant cases.
Data on individuals

In many areas of economics such as labour, development and health economics
where the behaviour of individuals is being studied, the relevant data typically per-
tain to individual human beings. In some cases such data are recorded on a large
scale by governments: income tax data provide an example, but also illustrate the
fact that the use of such data is typically subject to restrictions to protect confiden-
tiality. Most data sets concerning individuals are however collected from individuals
who participate voluntarily in surveys. Responses will typically show some sample-
selection effect ; see Chapter 21.
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Appendix to Chapter 2

The logarithmic function
A logarithmic function is the inverse of an exponential function. An exponential

function is one that has the form
y = az,

where a > 0 and a 6= 1; z may be any real number (z ∈ R), and therefore y may take

on any strictly positive real value (y ∈ R++). The logarithmic function with base a

applied to y gives back z : loga(y) = z (i.e. loga(az) = z).
For a > 1, the exponential function increases without bound and has an in-

creasing slope as z increases; the logarithmic function with base a > 1 also increases
without bound, but with decreasing slope, as z increases.

A very commonly used value of the base is the constant e, is defined as

e = lim
h→0

(1 + h)
1
h .

This constant has the property that the exponential function based on e is its

own derivative, i.e. if y = ex, then dy
dx = ex. In general for a base a, y = ax and

dy
dx = kax, for some constant k which is not equal to unity unless a = e.

The logarithmic function with base e is called the natural logarithmic function
and is plotted in Figure A2.1. It is often written simply as log(y) with no base

indicated; the symbol ln(y) is also used.

Figure A2.1
The natural logarithmic function
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In addition to the properties given in section 2, note that

log(yh) = h log(y) and log(yz) = log(y) + log(z)

(therefore log(yz ) = log(y) − log(z)). Logarithms taken to different bases differ only

by a constant factor: loga(z) = (loga(b)) logb(z).
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Chapter 3

Elementary data description

It is often useful to have simple numerical measures of the properties of data
series, even when plots of the data or other descriptions of the entire set of data may
be available. Simple summary measures are useful in communicating properties, in
making general comparisons, and in reasoning about data. For example, we may
argue that a certain change in financial markets will tend to make the fluctuations
in returns more pronounced; this will be hard to see in ‘before’ and ‘after’ graphs
of sequences of returns unless the change is dramatic, but a number measuring the
typical size of fluctuations may increase. Similarly, we may wonder if undergoing
a training program is associated with higher wages for workers. Plotting the data
on a thousand workers randomly selected for the program, and another thousand
who were not selected, is unlikely to reveal a clear distinction given the many other
differences among workers. But if we calculate an average wage for both groups, a
difference may well be discernible.

Many such measures, or statistics, have been defined. (Note that a statistic

is a quantity calculated from data, as opposed to an observation from a data set.)
In this chapter we will review only a few of the most commonly used statistics, to
introduce the subject and to help us in discussing other topics. Our discussion in this
chapter will refer only to the observed data, and not to any theoretical quantities that
these statistics may measure; in later chapters, when we have defined the relevant
theoretical concepts, we will begin to link these measures to them, and we will see that
these quantities can be understood as estimates of underlying theoretical properties
of distributions.

3.1 Measures of location or central tendency

The most common statistics used to describe data are those that indicate where a
typical observation lies: where the ‘centre’ of a set of observations is located. Some of
these statistics are sufficiently well known to be used (albeit sometimes imprecisely)
in common speech.

In order to define terms precisely, we now need clear notation to describe a data
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set. LetN be the number of observations in our data set, and let these observations be

labelled x1, x2, . . . , xN . Standard notation for summation uses the symbol
∑N
i=1 xi ≡

x1 + x2 + . . . + xN ; i is called the index, and we say that i indexes the set of N
observations.

Here are a few simple measures of location.

D3.0 Sample mean:11 X ≡ 1
N

∑N
i=1 xi.

To define the next measures, we need to sort the data and have notation for the
ordered data set. Let the observations sorted from smallest to largest be labelled
x(1), x(2), . . . , x(N), so that x(1) ≤ x(2) ≤ . . . ≤ x(N) : these are called the order

statistics of the data. We can then define measures that refer to points in the ordered
set.

D3.1 Trimmed mean: X [k,k] ≡ 1
(N−2k)

∑N−k
i=k+1 x(i).

As we have defined it here, the trimmed mean drops the k smallest and the k
largest observations from the sample, leaving N−2k. The trimmed mean is also often
defined as the estimator that drops a certain percentage of the sample at the small
and large ends rather than a fixed number of points. In the latter case, the percentage
must tend to zero as the sample size increases in order for the estimator to converge
to the true mean. Trimmed estimators are sometimes useful where data may contain
occasional extreme observations which can have a large effect, in small or moderate
samples, on the estimated mean; trimming makes the estimator more robust.In some
cases asymmetrical trimming is used (differing numbers or percentages are trimmed

from each end of the sample).

D3.2 Sample median:

q̂0.5 =

x(j), j = (N + 1)/2, if N is odd

x(j) + x(j+1)

2
, j = N/2, if N is even

11This is the sample arithmetic mean. The sample geometric mean is

(
N∏
i=1

xi

) 1
N

,

that is, (x1 · x2 · . . . · xn)
1
N , which is appropriate in cases where the relevant total is

given by a product rather than a sum, as in compound growth.
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The sample median describes a point at or below which half of the observed data
lie (with an odd number of data points, of course, we cannot find such a point, so

we take the middle point as an approximation). We can divide the ordered data into

other equal parts such as fourths (the quartiles), fifths (quintiles), tenths (deciles)

and hundredths (percentiles); in general, these are called quantiles.12

Different definitions of sample quantiles or sample percentiles are used. A simple
one takes the α quantile as the smallest point in the sample such that at least a
proportion α of the data lie at or below that point: that is,

D3.3 q̂α = minj(x(j)) such that j
N ≥ α.

For example if α = 0.682, then q̂α is the smallest order statistic (the small-

est value in the sample) which is such that at least 68.2% of the sample values

are less than or equal to that value. If we have the nine (ordered) data points

{0.12, 0.38, 1.57, 2.02, 2.93, 3.45, 5.12, 6.74, 8.55} then q̂0.682 = 5.12.13

Notice that the median (which is usually thought of as synonymous with the

50th percentile) as defined in D3.2 is not a special case of this: if we applied D3.3 to

compute the fiftieth percentile (α = 0.5), we would get

q̂0.5 = x(j),
j = (N + 1)/2, if N is odd

j = N/2, if N is even.

Although D3.3 corresponds well with a theoretical quantity which we will de-
fine in Chapter 6, we may, particularly in small samples, sometimes wish to use
an alternative definition of a quantile such as is implicit in D3.2 for the median.
We will consider examples below after we have studied the concept of a cumulative
distribution function.

To illustrate some features of these statistics, let us return to the set of numbers
used in Example 5 of Chapter 1, and compute these measures. The sample mean
and median are respectively 2.58 and 1.88. That the mean exceeds the median
reflects the fact that the data have the long upper tail that we saw in Figure 1.1;

12Note the distinction between quartiles and quantiles; quartiles, like deciles and
percentiles, are a particular case of the general concept of quantile. We can discuss,

for example, the quantile 0.473. The quantile 0.25 is the first quartile.
13We obtain this value because 68.2% of our sample size = 0.682 × 9 = 6.138, so we
have to have at least 6.138 data points below our 0.682 quantile. We cannot have a
fractional number of data points, so the smallest value that gives us at least 6.138
points is the seventh; the seventh order statistic is 5.12. (Alternatively, if j/N is 7/9

= 0.777, this is big enough, but if j/N were 6/9 = 0.667, this would be too small:
we need at least 0.682 of the data below the chosen point, so j must be seven, and

the seventh point is 5.12).
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observations above the median tend to be farther from it than observations below,
so they increase the sample mean more than observations below the median lower
it. (Another way of thinking about this is to note that replacing a moderately large
observation with a very large one increases the mean, but doesn’t affect the median;
the large observations in the upper tail raise the mean, but the median is just the
same as it would be if the top observations were cut down to just above the median.)

3.2 Measures of dispersion

After learning about the centre of a set of data, the next thing that we typically
want to learn about is the degree of dispersion about the centre; are they heavily
concentrated there, so that most observations lie quite close to the sample mean, or
are they widely dispersed, so that knowing the sample mean says little about where
a typical point lies?

Two of the most commonly used measures directly describe dispersion around
the sample mean, so the sample mean enters their definitions.

D3.4 Sample variance: s2 ≡ (N − 1)−1
∑N
i=1(xi −X)2.

D3.5 Standard error:14 s = +[(N − 1)−1
∑N
i=1(xi −X)2]

1
2 .

Note that these definitions divide by N − 1 rather than N, although we are av-
eraging N items (the squared deviations of each observation from the sample mean).
The reasons for doing this are slightly subtle and depend on definitions not only
of these sample statistics, but also of underlying theoretical quantities that will be
introduced later; chapter 11 explains.

The sample variance is the typical squared deviation of a point from the centre.
If (e.g.) the sample mean is zero, and observations are at ±0.1, then the sample
variance will be 0.01. The standard error, however, would be 0.1, and so is a more
directly interpretable measure of the typical deviation of a point from the centre of

the data.15

Another set of dispersion measures makes no reference to the sample mean, but
is related instead to the percentiles of the data. To define these, we again need to
refer to the order statistics x(1)), x(2), . . . , x(N) rather than to the original, unsorted,

data.

D3.6 Range: x(N) − x(1).

D3.7 Interquartile range: q0.75 − q0.25.

We could of course define other measures, taking differences between any two
percentiles, but the interquartile range is commonly used.

14The ‘+’ denotes the positive square root.
15The French term for this measure, écart type (literally ‘typical gap’), is more

descriptive.

34



Sometimes it is useful to combine some of these percentile-related measures in
a graphical form. A box plot or box-whisker plot, for example, plots the median,
first and third quartiles, and more extreme parts of the data. A box covers the
interquartile range from q0.25 to q0.75, the median is indicated by a line in this box,
and lines (‘whiskers’) move outward; not all users define the whiskers in the same way,

however. The original definition (Tukey 19xxx) defines the whiskers as moving out to
the minimum, x(1), and maximum x(N) of the data, unless these points lie more than

1.5 times the interquartile range from the median; in the latter case, the whiskers
move out only to 1.5 times the interquartile range from the median, and larger or
smaller observations are indicated as isolated points. The whiskers are sometimes
defined instead as moving outward from the box to fixed percentiles of the data such
as the 10th and 90th, or 5th and 95th. An example is given in Figure 3.2.1, which
shows sets of forecasts of the probability that inflation will fall below a 3% target,
for sets of cases in which inflation did in fact turn out to fall below the target. The
fifteen plots show the results from fifteen forecasting models, with box-whisker plots
superimposed on the observed forecasts. (These data are from Galbraith and van

Norden 2011.)

Figure 3.2.1
Box-whisker plots of dispersion of probabilistic forecasts

Fifteen inflation forecasting models, outcomes with π < target

3.3 Measures of skewness and kurtosis

A set of data that is symmetrically distributed has the feature that the patterns
describing the data above and below the mean are mirror images of each other (i.e. the

data are distributed symmetrically around the mean). Data such as those depicted
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in Figure 1.1 are said to be skewed rather than symmetric; on one side of the mean,
the data are dispersed more widely. A sample measure of skewness can be defined
using the standard error (D3.5) as a scaling factor.

D3.8 Coefficient of skewness:
[(N−1)−1

∑N

i=1
(xi−X)3]

s3 .

The purpose of scaling by the cube of the standard error is to concentrate on
skewness, removing the effect of dispersion: the numerator of the expression will tend
to be larger for higher-variance data sets, but we want to abstract from this feature
and concentrate on asymmetry alone. Dividing by the cube of the standard error is
one adjustment that we can perform to do this.

Note that as the variance used the sum of the second power of terms in (xi−X),
the coefficient of skewness uses the third; the measure of kurtosis that we will define
below uses the fourth, and each of these can be seen as estimates of moments of the
underlying distribution of data, which will be defined in Chapter 7: that is, each of
these measures can be seen as an estimate of an underlying theoretical quantity.

The theoretical value of the coefficient of skewness is zero for a symmetrically
distributed set of data; however the converse is false (a coefficient of zero does not
imply symmetry–it is possible that different patterns on either side of the mean can
nonetheless lead to positive and negative terms exactly cancelling in the numerator
of D3.8).

Recall also that the mean is equal to the median for a symmetric distribution.
Another measure of skewness is based on this relation:

D3.9 Alternative skewness measure: (X − q̂0.5)/s.

In words: mean minus median, divided by standard error. Again, symmetry
implies that the true theoretical quantity that this measures will be zero, but the
converse is not true. This quantity will always lie in the interval [−1, 1].

Sums of higher powers of (xi −X) can also be given meaningful interpretations

(note that the variance and coefficient of skewness were based on sums of second and

third powers of this quantity). In particular, the standardized fourth power is often
used as a measure of the relative frequency of extreme events, or the thickness of
tails, as follows:

D3.10 Coefficient of kurtosis:
(N−1)−1

∑N

i=1
(xi−X)4

s4 .

This standardized fourth moment is one natural measure of tail thickness, but
many sources will define the coefficient of kurtosis by subtracting three, the reason
for this being that three is the value in the population for the Normal distribution,
(Chapter 7), so that by subtracting three we obtain a positive number if the kurtosis
exceeds that of the Normal. Some sources will describe this as the coefficient of excess
kurtosis.
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D3.11 Coefficient of (excess) kurtosis:
(N−1)−1

∑N

i=1
(xi−X)4

s4 − 3.

This then is useful as a measure of the frequency of extreme events relative to the
Normal distribution, for which, again, the theoretical quantity estimated by D3.10 is
equal to three; therefore D3.11 measures the excess of this over the theoretical value
for the Normal. We will study this property in Chapter 6.

To illustrate these measures on a readily-available data set, consider the S&P500
index, which we will label St at a time index t. With daily data from 2 January 1957
through 30 September 2010, we can compute the daily returns (St − St−1)/St−1

beginning with the second day. Here is a plot of the 13531 data points on returns:

Figure 3.3.1
Daily returns on the S&P 500 index, 2 January 1957–30 September 2010
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Multiplying by 100 gives daily percentage returns. The sample mean X of these
daily percentage returns is 0.0287 (that is, on an ‘average’ day, the S&P500 rises by

0.000287 or 0.0287 percent). The trimmed mean dropping the five smallest and five
largest returns is 0.0294; the fact that it is slightly larger reflects the fact that the
smallest returns (i.e. the largest daily losses) have been greater in absolute value
than the largest returns.

The standard error of the percentage returns is 0.994 and the mean absolute
return (the sample mean of the absolute values of these data) is 0.669: although the
mean return is just slightly above zero, this is the mean of many positive and many
negative returns which approximately offset each other; a typical day’s change is well
away from zero.

The coefficient of skewness is -0.642, a fairly small degree of leftward skewing.
The coefficient of kurtosis is however 22.39, far above the value 3 that applies to
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a Normal distribution, reflecting the fact that financial return data such as these
typically show a much higher frequency of extreme events than would a Normal
distribution with the same mean and variance. If one were to fit a Normal distribution
to these return data to predict risk, it would provide a very poor characterization and
would lead to severe underestimates of the probabilities of large losses or gains. In
later chapters, after parametric distributions such as the Normal have been discussed,
we will return to this example to illustrate this point.
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3.4 Measures of association

The descriptive measures given so far apply to single series of data. Often we
want to describe the association between two data series: do they tend to rise and fall
together, for example? Commonly used measures of association are the covariance,
an extension of the concept of variance given above, and correlation, which scales the
covariance into a fixed interval.

D3.12 Sample covariance between variables X and Y : (N−1)−1
∑N
i=1(xi−X)(yi−Y ).

Note the analogy to the definition of the sample variance above: in that definition

the term (xi − X) appears multiplied by itself (that is, squared) where is in this
definition the second of these terms is replaced by the corresponding quantity and
the other variable. The sample variance of the variable is therefore analogous to the
sample covariance of the variable with itself.

This raw sample variance can be difficult to interpret: a small value may be
consistent with the strong association, or a large value with a weak association.
The covariance depends upon the variances of the underlying variables, and so those
variances need to be known or estimated in order to judge whether a particular
sample code variance is a ‘large’ or ‘small’ value. The correlation deals with this by
scaling the sample covariance, using the square roots of the sample variances of the
two underlying variables.

D3.13 Sample correlation between variables X and Y :

(N − 1)−1

∑N
i=1(xi −X)(yi − Y )

sXsY
,

where sX and sY are the standard errors (square roots of the sample variances) of
X and Y respectively. The correlation lies in the interval from -1 to +1.

A positive correlation means that when one of the variables is above its mean,
the other variable will tend to be above its mean as well; the closer is the correlation
to one, the less likely it is that one of the variables will be below its means and
the other is above. By contrast, a negative correlation means that when one of the
variables is above its mean, the other variable will tend to be below its mean.

It’s important to bear in mind that covariance, correlation, or other measures
of association do not imply causation. For example, in a large sample of people
who are surveyed about their health, we might find that there is a strong negative
correlation between the amount of coffee that an individual consumes and the typical
number of hours sleep that he or she gets. Does this imply that drinking coffee (even

in the morning) causes people to sleep less overall? Not necessarily: this might
be true, or it might be that people who sleep less well drink more coffee in an
attempt to compensate, or it might be that some third factor tends to produce the
association, for example that people with high-stress jobs tend to sleep less but also
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drink more coffee in order to be able to work harder during the day. In other words,
the causation might run from more coffee to less sleep, from less sleep to more coffee,
from something else to both less sleep and more coffee, or perhaps causation runs in
two of these directions, or in all three directions. From the statistic alone, we have
no idea. We just know from this measure that coffee consumption and sleep tend to
be negatively associated.

It is often tempting for people to impute causation. To take another example,
a study may find a positive correlation between amounts that elderly individuals
take of a certain vitamin, and measures of cognitive ability. Readers of journalistic
accounts of the study might think that they should take more of this vitamin to
prevent decline in their mental abilities. But while it’s possible that the vitamin
does indeed have this effect, it’s also possible that causation runs the other way:
elderly people who are suffering cognitive impairment may be less inclined to take
their vitamins. It may also be that some third factor produces an association: those
who have developed habits of taking good care of themselves may be more likely
to take vitamins, and also may be more likely to retain their cognitive ability into
advanced age. The existence of the correlation does not imply that the vitamins are
having any effect.
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Chapter 4

Some philosophy of
(empirical) science

One of the main concerns of the philosophy of science is to understand the
methods we can use to understand the world better through empirical observation
and experiment. Much of this literature is relevant to research in the social as well
as natural sciences, and in fact is relevant to any attempt to learn from observations.
Understanding the limits of what we can learn from data is one of the things that
will help us to think clearly about the results of statistical analyses, and a brief look
at some philosophy of science will be useful. This chapter will give only a very short
overview of some of the ideas that seem to me to be useful and to underlie much
modern thinking about scientific method and empirical knowledge. This discussion
is largely based on influential work of Popper (1935, 1959).

We often want to find explanations of features of the world that we observe: for
example, why can countries with apparently similar endowments of natural resources
have such different levels of income? In many cases such as this, we cannot perform
experiments to investigate different explanations, and we rely on empirical observa-
tion. Often, numerous different explanations can be suggested for an observation,
and we want to know what we can do to distinguish these different explanations and
preferably to narrow down the set of possibilities to a smaller number. An impor-
tant point here is that empirical data can in principle allow us to show that some
theories are false, but cannot prove theories to be true. Essentially, and this is the
idea of falsification that is associated with Popper (and which also seems to describe

much scientific method as practiced for centuries) we use empirical evidence to try
to eliminate some theories from contention. Those that remain are are tenable, at
least until further observations come along (which may later show them to be unable

to explain some further piece of evidence).
Three key concepts to understand are falsification, corroboration and induction.
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4.1 Falsification

In order to be falsifiable, an explanation or theory must make some statements
that are in principle capable of being contradicted by an observation or experience. If
this is the case we can compare the predictions of the theory to empirical experience,
and can ask whether the theory appears to be compatible with what we observe. If
not, then the theory in its current state is not sustainable. If so, then the theory may
be said to have been corroborated, but certainly not to have been proven true; there
may be many other theories that are also compatible with the observations we have
made.

For example, consider a very simple form of the Fisher hypothesis stating that
the nominal interest rate is equal to the inflation rate plus a constant real interest rate

(i = π+r, in a standard notation).16 We might look at data from a given country over
time and find that the theory seems to have some value, since certainly inflation and
nominal interest rates tend to rise together by similar though not identical amounts;
however, because they don’t rise by identical amounts, we would have to reject the
basic theory. Nonetheless, we might move on to try to formulate a better theory
which retains some elements but allows for some variation in the real interest rate;
we might for example consider a theory that says that the nominal interest rate in a
given country is equal to the inflation rate in that country plus a real interest rate
which is equal to the U.S. real interest rate plus a small margin. We could then
test that theory on new empirical observations. This refined theory would perform
better, but will still not be perfectly compatible with the data: in a small sample of
data we might not have enough evidence to reject it, but in a larger sample of data
we would do so, and we would then have to move on to consider further refinements.
It’s entirely possible that a theory may be compatible with one set of data and not
with an augmented version of the data set which contains additional information and
observations. In this case as we get more data we refine the theory, because we are
able to discriminate more and more subtle effects as more data accumulate and more
information accrues.

When predictions and observations are clear and unambiguous, it may be entirely
clear that an explanation has been falsified. When random samples are involved
however, things will typically not be so clear. For example, one may believe that a
person’s income is related only to factors which affect productivity, such as ability,
education and work effort. One may therefore believe that income is independent of
characteristics such as height, at least when we control for these other factors. In a
random sample of data, we may nonetheless observe an association between height

16By a ‘real’ interest rate we mean a return measured in purchasing power, rather
than in nominal currency units; for example, if the annual inflation rate is 5% and
we obtain a return in currency units of 9% on a one-year bond, then the return in
units of purchasing power is 1.09/1.05 − 1 ' 1.038 or about 3.8%. We received 9%

more currency on our investment, but currency lost 5% of its purchasing power, so

we can only buy about 3.8% more after our one-year investment.
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and income, again after controlling for these other factors, using methods that we will
see later. It’s possible, however, that this association is just the result of an unusual
sample of data. One purpose of statistics is to try to determine the probability that
this is true; that is, the probability that a result has arisen because of sampling
error or randomness, and does not reflect a genuine relationship. Nonetheless, it will
never be possible with random samples of data entirely to eliminate the possibility
that sampling error is responsible for a result. What we can do, however, is to
estimate the probability that this is happening. If we use an appropriate technique,
and accumulate more and more data, then we will typically be able to drive this
probability to a small number so that our confidence that falsification has genuinely
occurred becomes quite high.

4.2 Corroboration and induction

It is often the case that theory may be tested against data many times and
repeatedly make successful predictions. While theories or explanations are often said
to be corroborated by this process, it’s important to remember that this does not
entail proving the theory true, nor does it even entail making it probable that the
theory is true; we have no basis for any formal probability statement about this
process.

It’s always possible that another theory makes identical predictions to the theory
that we tested, but differs in some other circumstances that we have not yet observed.
A good example of this is the classical (Newtonian) mechanics developed by Sir Isaac
Newton in the 17th century. Newtonian mechanics was exceptionally successful at
explaining the movements of bodies both large and small, from planetary motions
down to the movements of objects small enough to hold in our hands. Within the
limits of measurement, virtually all observations about such bodies’ movements could
be explained through Newton’s laws of motion. This corroboration through repeated
successful experiments persisted for many many years; experiment after experiment
after experiment was consistent with the predictions of Newtonian mechanics. It
would have been a mistake nonetheless to state that the theory had been proven to
be true or even that had been shown to be probably true.

It turned out of course that the reason that experimenters of the 17th, 18th and
19th centuries did not have observations that were incompatible with the theory was
that the circumstances or technologies required for such incompatible observations
were not available at that time. Early in the 20th century, Albert Einstein produced
his theories of special relativity and general relativity, which implied that there would
be deviations (very small, within the range of size and velocity usually observable)
from the movements predicted by Newton’s laws of motion. These would be essen-
tially undetectable given the measurement precision available before the 20th century,
but in the presence of very massive objects or objects moving very close to the speed
of light, there would be detectable deviations from Newtonian mechanics once the
technology existed to make measurements of this type. It soon became clear that
there were indeed deviations from the predictions of Newton’s theory which could be
accounted for by the relativistic theories.
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In this case it became clear that, as in the previous example, with more infor-
mation we are able to uncover more subtle effects, and that these effects may be
incompatible with an existing theory; a new theory is advanced which in this case
also explains the patterns explained by previous theory, and explains further obser-
vations as well. Hundreds of years of successful predictions by the Newtonian theory
therefore did not imply that it was the truth: it was simply a theory that was a good
approximation through a wide range of circumstances. That is, it was an adequate
theory for explanation of all observations made until the early 1900’s, but was even-
tually superseded by a more subtle theory that explained more. It would have been
a mistake in reasoning therefore to presume that one was proving the Newtonian
theory correct with repeated observations in which it made successful predictions;
we simply had not yet met circumstances in which it could be distinguished from
another theory.

What we learn from corroboration is that we can continue to use a theory to make
deductions or predictions for the time being. We recognize that more evidence may
emerge that will show that the theory has inadequacies, and we recognize that the
theory may therefore be replaced someday with another, but corroboration indicates
that the theory can reasonably be used for practical purposes until this time.

This is related to the traditional problem of induction. Popper (1959: p. 27)
writes

It is usual to call an inference ‘inductive’ if it passes from singular statements
(sometimes also called ‘particular’ statements), such as accounts of the results
of observations or experiments, to universal statements, such as hypotheses or
theories.

For example, we might repeatedly see cows that have some white markings or
patches on them. When can we conclude from these observations that all cows have
white patches? The answer of course is that we can’t.

This is not to say, of course, that inductive reasoning is never useful. For exam-
ple, over many years of driving to my cottage, I’ve noticed that I’m much more likely
to see the police on the Eastern Townships autoroute giving out speeding tickets on
warm sunny days, than on cold dark rainy nights. (It’s possible of course that I

simply don’t see the cars as well at night, but I don’t think that’s it.) One might
be tempted to make an inductive leap and say that traffic laws are more heavily en-
forced when driving conditions are safe than when driving conditions are dangerous
– perhaps because the police like to work office hours, and don’t like to get out of
their cars if it’s rainy. However, we can’t be sure of this. Nonetheless, it’s useful to
have evidence that there are often a lot of police out on the highway on sunny days
when I might otherwise be tempted to drive fast and rack up demerit points, and
it’s reasonable to act on this information. I could in fact go further and use methods
that we will learn later, together with some systematic data collection, to test the
hypothesis that the probability of a given speeding driver being given a ticket is the
same in the day and evening.
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4.3 Asymmetry

One of the things that we always need to bear in mind, as the discussion above
implies, is there is an asymmetry between proving things true and proving things false.
This asymmetry occurs in simple forms of logical reasoning as well as in statistical
reasoning.

For example, if we say that all cows have white patches on them, we can prove the
statement false by observing a single cow that has no white patches; the statement is
a universal one and purports to describe all instances, and therefore a single instance
which is incompatible with it is sufficient to disprove it. By contrast, no number of
observations of cows that do have white patches is sufficient to prove that all of them
have white patches; it is always possible in principle, even if we haven’t observed
one, that cows without white patches exist. No number of empirical observations
will allow us to prove a universal statement to be correct, but a single observation
can allow us to prove the statement false.

This asymmetry between proving things true and proving things false also shows
up in the context of statistics. When we study hypothesis testing, this asymmetry
shows up in the way we interpret rejections or non-rejections of tests. If we reject a
hypothesis in a statistical test, then this tells us that (apart from some probability

of a misleading result, which we can quantify) the hypothesis is false; but if we do
not reject it it does not prove that the hypothesis is true. It is always possible that
there are other hypotheses that would have generated the same predictions in the
current case, but would provide better predictions in other circumstances. When we
fail to reject the hypothesis, we learn that our observations have not provided strong
evidence against it, but this is not the same thing as having shown the hypothesis to
be true, because we can’t be sure that other observations will not do so. As Popper

(1959: p.4117) writes,18

My proposal is based upon an asymmetry between verifiability and falsifiability;
an asymmetry which results from the logical form of universal statements. For
these are never derivable from singular statements, but can be contradicted by

17A footnote is omitted from this quotation.
18In classical logic, modus tollens (Latin: roughly ‘way of removing’) refers to an
argument of the following form: If X is true then Y is true; Y is false; therefore X
is false. Modus ponens (Latin: roughly ‘way of placing’) refers to an argument in
this form: If X is true then Y is true; X is true; therefore Y is true. These are two
valid forms of deductive argument. There are two similar-looking invalid forms of
reasoning, or fallacies: If X is true then Y is true; Y is true; therefore X is true. For
example, if cows can fly, then airplanes can fly; airplanes can fly, therefore cows can
fly. Whoops! This is called the fallacy of affirming the consequent. Finally we have
the fallacy of denying the antecedent: if X is true then Y is true; X is false; therefore
Y is false. For example, if cows can fly then there are living beings in the air; cows

can’t fly; therefore there are no living beings in the air. Wrong.
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singular statements. Consequently it is possible by means of purely deductive
inferences (with the help of the modus tollens of classical logic) to argue from
the truth of singular statements to the falsity of universal statements.

4.4 Conflating empirical observation and interpretation

A common kind of invalid inference arises from combining an empirical obser-
vation with an interpretation, and concluding that the reliability of the empirical
observation implies the reliability of the whole package, with the interpretation as
well.

Here is an example from a recent news story. A photographer has made fre-
quent trips over many years to the Antarctic, documenting snow cover and animal
populations. One of the things that the photographer observes is that a penguin of
particular species, after falling over, will get back up and look around. This is appar-
ently a very common behaviour pattern, and the observation (coming from someone

who has visited the Antarctic over many years) is probably reliable.
The photographer then interprets the penguin looking around as the penguin

looking to see whether anyone was looking, and further, that the penguin has a sense
of humour. So we now have an empirical observation (reliable) coupled with an

interpretation (fanciful); of course other interpretations of the penguin’s behaviour
are possible, such as that the penguin was looking around to see if it had slipped
on something, or anything hit it, or perhaps it wanted to take its bearings after
becoming disoriented. But we are encouraged (as the story is written, anyway–it’s

not clear to me how seriously anyone believed this) to think that a reliable observer
with many years experience has observed penguins looking over their shoulders to
see if any other penguins were looking as they fell, and perhaps even demonstrating
a sense of humour, and that this entire package has been reliably established. But
this is not so: only the looking around is a reliable empirical observation.

An example from economics might be that of a behavioural or experimental
economist who, in laboratory experiments with human subjects, observes a particular
pattern repeatedly. He or she then makes an interpretation of that pattern with
respect to some cognitive bias in the subjects, for example. The careful researcher
will distinguish the pattern observed in experiments, which may be repeatable and
reliable, from the interpretation that is made of these experiments; but if the claim
is made that the given interpretation has been proven to be correct through repeated
experiments, then that is an invalid claim. The existence of the behaviour pattern
may have been established empirically; the reasons for the pattern’s occurrence have
not. So a careful researcher will say something along the lines of: ‘We reliably observe
that agents display behaviour pattern X. One possible interpretation of this is ...’

Notice that we are in a situation of asymmetry once again, and as usual. In
the two cases just noted, an investigator has posited an explanation – a hypothesis
– based on an empirical observation. It would be a mistake to conclude that one has
proven the hypothesis true based on this set of observations, for reasons discussed
earlier; other explanations will in principle be possible. By contrast, if the empirical
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observation is used to refute a hypothesis, then the argument is legitimate if indeed
the observation is reliable and is incompatible with the hypothesis.

A very well known example is the Allais paradox. In a classic set of experi-
ments, Maurice Allais (c. 1953) checked conformity of human subjects with some
predictions of expected utility theory, by offering participants a choice of two dif-
ferent gambles with known probabilities associated with each of the outcomes, in

each of two different experiments or settings.19 It is straightforward to show that,
although utility functions differ across individuals and so the preferred gamble may
differ, an expected-utility-maximizing agent who prefers one of the gambles in the
first experiment should prefer the corresponding gamble in the second experiment.
(In other words, while we don’t know agents’ utility functions, choosing gamble A

(alternatively, B) in the first experiment gives us enough information about the util-

ity function to conclude that the agent should choose gamble A (alternatively, B)
in the second experiment as well; the two experiments differ in such a way that the
difference between them would not change the choice of an agent who maximizes ex-
pected utility.) While there is of course variation across individuals, this experiment
has been repeated many, many times in many different places, and it is a reliable ob-
servation that a majority of subjects do not conform with this pattern, that is, they
do not make the choice of gamble in the second experiment which must correspond
with their first-experiment choice, if they are maximizers of expected utility.

In this case the set of experiments is a valid refutation of the idea that agents
conform precisely with the predictions of expected utility theory. It is a rejection
rather than an affirmation that a theory is true; the empirical observation that people

do not conform with the predicted pattern is sufficient to reject the (literal)20 truth
of the hypothesis.

4.5 Summary

1. Genuinely scientific theories must be falsifiable. A statement which is not falsifiable
is some other kind of statement rather than a scientific one. (By ‘scientific’ we refer

of course to using the scientific method, rather than to natural science in particular.)

2. Theories or explanations should be tested, that is, attempts should be made
to falsify them in order to narrow down the set of possible explanations that may
potentially be valid.

19The form of these experiments has been described in so many places that I won’t

write out the structure here.
20Expected utility maximization does seem to be quite a reasonable approximation
in many contexts; the existence of anomalies such as these tells us however that the
theory cannot be literally true, just as Newtonian mechanics provides an excellent
approximation to the behaviour of physical objects through a wide range of speeds

and scales, but not for all cases.
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3. Theories that have not been falsified can be retained as tentatively adequate ex-
planations, but can’t be taken to have been proven true, however much corroboration
they may receive. It’s always possible that new observations will come along to falsify
a theory.

4. We cannot be literally certain that falsification has occurred when we work with
statistical observations that have uncertainties associated with them, but as we obtain
more data we can narrow our uncertainty bands and be more confident in a falsifi-
cation. We can then better distinguish similar theories that may differ in relatively
subtle ways.
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Part II: Some theoretical foundations

49



Chapter 5

Probability theory

Statistical reasoning depends on a theory of probability. Understanding the
meaning and interpretation of test statistics, estimation methods, and even of the
simple descriptive statistics that we reviewed in Chapter 3, requires an understand-
ing of probability. Probability statements are also made in common, non-technical
conversation, and a better understanding of probability will also help us in making
more precise statements and in evaluating statements that we hear. For example,
we often say things such as ‘She’ll probably be here before noon.’ By ‘probably’ we
presumably mean that the probability of her arrival by noon is greater than 50%;
a more precise version of this statement might be ‘I’m 90% sure that she’ll be here
before noon.’ But what do these statements mean? In the end she’ll either be here
by noon or she won’t, so how (if at all) could we ever check on the accuracy of the
statements?

People have considered probability a priori, or through purely theoretical rea-
soning, and empirically or a posteriori, through actual observations of random events.
These two ways of learning about probability produce compatible results, if we inter-
pret them sensibly. We will begin by discussing simple, traditional ways of defining
probability along each of these lines, and we will see that although we can understand
a good deal using these simple definitions, they will not allow us to solve all of the
problems that we want to solve. Next we will set out a formal system that allows
us to write clear and precise rules for describing and calculating probabilities. This
system will operate using sets of events, so we will need to study some set theory in
order to work with the system. We will then be able to understand enough about
probability, unconditional and conditional, to follow the statistical arguments in the
rest of this book.

5.1 ‘Classical’ probability

As we have noted, the earliest formal study of probability was motivated by
gambling problems. Many such problems have the feature that the outcomes (rolls

of dice, card selections, etc.) can be divided into equally likely outcomes–that is, we
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may not know the probability of something, but we may feel confident that two or
more things have the same probability, whatever that is. Thinking about probability
in this way will not allow us to solve all problems that interest us, but will take us
quite a way , and will help to introduce a more general approach.

We first define a random experiment.

Definition 5.1.1: A random experiment is an experiment for which the outcome is
not known with certainty.

Note that, as in our discussion in Chapter 2, randomness requires only that there
be some uncertainty about the outcome.

Definition 5.1.2: Classical probability Suppose that a random experiment can result

in any one of n outcomes, which are mutually exclusive21 and equally probable. If
nA of these outcomes have a characteristic A, the classical probability of an outcome
with characteristic A is nA

n .

Note that the probability of A arising is defined with reference to other probabil-
ities, of each of the outcomes, which we assumed to be equal. We can compute some
probabilities from others, but we have to rely on some assumed a priori knowledge
to do so.

The traditional examples illustrating this definition use dice, cards and coins,
where it is sensible to assume that certain outcomes have identical or virtually iden-
tical probabilities. If a head and a tail are equally likely when we flip a coin, then

the probability of either outcome, by D5.1.2, is 1
2 . If we roll a six-sided die and each

of the integers 1, 2, . . . , 6 is equally likely to arise, then the probability of any one of

these outcomes is 1
6 ; the probability of an even number arising is 3

6 or 1
2 ; of a number

greater than 4 arising is 2
6 = 1

3 , and so on. In picking a card from a standard deck at

random, the probability of a club is 13
52 = 1

4 ; the probability of picking out a Queen

is 4
52 = 1

13 .
22

In calculating probabilities in this way, we must be careful not to assume that
a division of possible outcomes into k categories means that each category is equally
likely to arise. For example, if we roll two dice, the possible outcomes for the sum of
the two values are the integers 2, 3, . . . , 12. However, these values are not all equally
likely, because some of them can arise in more ways than others, and so have a higher
probability of occurring. There are six possible values for the first die, and six for the
second, or 36 possible permutations. Of these, one (1 and 1) yields a sum of 2, so the

21Mutually exclusive: any one outcome excludes the possibility of any other outcome.
22For those readers brought up in strict Methodist households, a standard deck has
52 cards divided into four suits (clubs, diamonds, hearts, spades), each of which

contains cards numbered 1 (ace) through 10, plus Jack, Queen, King.
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probability of a 2 is 1
36 . The most likely number to arise is 7, which can be produced

by (1, 6), (2, 5), (3, 4), (4, 3), (5, 2) or (6, 1), or six of the 36 equally likely possibilities,

so its probability is 1
6 . Similarly, imagine that a couple decides to have two children.

What is the probability that they will both be girls? The possible outcomes might
be categorized as two girls, two boys, and one of each. This does not imply that the
probability of each of these outcomes is identical (if they were, then the probability

of two girls would be 1
3 ). If it is equally probable that each child be a boy or a girl,

then a categorization into equally probable outcomes is GG, GB, BG, BB. Having

two girls is one of four equally probable outcomes, so the probability is 1
4 .

Now what if the probabilities of a boy or a girl being born are not exactly 1
2

but, for example, 0.505 and 0.495? We no longer have the equally probable events
necessary to compute the probability that we want using D5.1.2 (although in this
case using 0.5 would give a good approximation for most purposes, we cannot get
the exact answer). Even this simple problem is beyond the scope of D5.1.2, and this
is true of other kinds of problems that we will want to solve, involving for example
a set of outcomes which is of unknown size, or potentially infinite. We need to have
more elaborate methods for deductive reasoning about probability.

5.2 A posteriori probability

Another traditional approach to probabilistic reasoning begins from the other
end of the problem. Rather than reasoning purely deductively, we can observe out-
comes, and attempt to infer probabilities from these outcomes.

Definition 5.3.1: A posteriori probability. Suppose that a random experiment is
repeated n times, and produces an observable outcome each time. If nA of these
outcomes have a characteristic A, the a posteriori probability of an outcome with
characteristic A is nA

n .

Notice that while the notation used (A,n, nA) is the same as in D5.1.2, we
now speak of an experiment that is actually carried out, from which we will infer
probability. We do not need to assume that any two events are equally likely, but we
do need a set of observations to work with.

Reasoning in this way will allow us to handle problems that we could not handle
with D5.1.2, because equal probabilities are not required; however, different people
carrying out the experiments will usually get different answers (if they do a very

large number of experiments, however, the differences will typically be small). For

example, I might flip a coin 100 times and get 53 tails; you might get 48 tails (in
fact, the whole range of answers that will typically arise when many people do this
experiment can be described precisely, as we will see in later chapters.)
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Now consider again the example of the couple with two children, and the proba-

bility that a baby will be a girl or boy.23 The proportion of newborns who are boys has
frequently been measured and, while the actual proportions of course differ slightly
from place to place, it is typically found to be around 0.512. We would infer from
this that there is some probability that a newborn will be male (we might qualify

this by saying that the probability is specific to a particular region or time), and that
we have measured this probability at 0.512, recognizing that this is a measurement
subject to some degree of error, rather than an exact answer. We have no means
of putting approximate bounds on this error or otherwise giving any indication of
its importance, although this is a key element in statistical reasoning which we will
want to develop methods to address. In this case (that is, reasoning a posteriori ),
we could also directly measure the proportion of couples who had two girls among
those who had exactly two children.

Health economists as well as medics are often interested in survival probabilities
after life-threatening events. Consider two possible procedures for treating a patient
brought to hospital after having had a heart attack. What is the probability of sur-
vival if procedure A is followed, versus the probability if procedure B is followed?
How do these compare with the probability if no treatment is given? We can imagine
estimating these probabilities by assigning incoming patients randomly to procedure
A, procedure B, or to no treatment, and computing the survival proportions to esti-
mate probabilities. If it is clear that the procedures are better than nothing, however,
assigning some to have no treatment would be unacceptable; moreover, if admissions
staff tend to assign certain types of patients to treatment A and some to treatment
B, then our sampling is biased and the proportions will not reflect the desired proba-
bilities: for example, admissions staff may believe that procedure A is more effective
in the worst cases, and so may assign the worst cases to procedure A: procedure A
then has a group of cases which are typically less likely to lead to survival, and so
may show a lower survival proportion for that reason, rather than because it is less
effective.

These examples illustrate the strengths and limitations of the a posteriori ap-
proach. As long as we have a large number of observations made under comparable
conditions, in which a certain feature can be observed to occur or not, we can esti-
mate a probability. This is very flexible and does not require that we assume things
that might not be true, such as equality of birth probabilities, in order to get an
answer. On the other hand, it gives us no means of using reasoning to supplement
our knowledge beyond what can be directly measured in repeated experiments, and

23Note again that we can speak of probability to describe our (imperfect) knowledge
of a situation even if someone with greater knowledge could describe the situation
with certainty. Before ultrasound or other tests, one might have said just before a

birth that the probability of having a girl was about 1
2 , although the child’s sex was

already determined with certainty and would have been observable to someone with

the right technology.
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gives us no means of answering questions such as ‘what is the probability that we
will be in a recession in three months?’ or even ‘what is the probability that I will
die of a heart attack?’.

In order to be able to solve a wide variety of problems, we will need to set out a
precise and more general description of what we mean by ‘probability’. We will do so
by starting with some definitions, using these to define probability via several axioms,
and then using further mathematical methods with the definitions and axioms to
compute probabilities. In order to make the necessary definitions, we need to refer to
some concepts from set theory, so we will begin with some fundamental set-theoretic
concepts. We will complete our review of set theory in a later section.

5.3 Set theory: basic concepts

This section contains only a few very elementary definitions and examples.

Definition 5.3.1: Set A set is a collection of items.

The items in a set may be tangible or intangible. For example, we may have a
set of ideas: A = {capitalism, socialism, communism, Maoism } is a set of political
philosophies which were influential in the 20th century. We usually write the elements
of a set within parentheses, separated by commas.

Definition 5.3.2: Element An element of a set is one of the items in that set.

Definition 5.3.3: Space A space is the collection of all possible elements from which
sets may be defined in a particular context.

The set A just given may be thought of as containing elements from the space
of all possible political philosophies.

Definition 5.3.4: Subset A subset is a part of another set, such that if B is a subset
of A, every element of B is also an element of A.

The symbols ‘⊂’ and ‘⊃’ are typically used to describe subsets; B ⊂ A means
that B is contained in A, or B is a subset of A; similarly B ⊃ A means that B
contains A, so that A is a subset of B.

Definition 5.3.5: Complement The complement of a set A, denoted here by A, consists
of all elements of the space which are not in the set.

Definition 5.3.6: Union The union of two sets A and B, denoted A ∪B, is the set of
all elements which belong to at least one of the sets. Similarly, the union of ` sets is
the set of all elements belonging to at least one of the ` sets.
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Definition 5.3.7: Intersection The intersection of two sets A and B, denoted A ∩ B,
is the set of all elements which belong to both of the sets, and the intersection of `
sets is the set of all elements which belong to every one of the ` sets.

Our aim below will be to use set theory to help develop some statements about
probability that can be used for computing probabilities. We will therefore need to
take advantage of any known relations among these set-theoretic concepts, in the
next section, to develop rules applicable to probabilities. Some of these rules are
summarized in the following theorem.
Theorem 5.3.1 Set operations: For any sets A,B,C etc.,

i (Commutativity) A ∩B = B ∩A; A ∪B = B ∪A.
ii (Associativity) A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C) and A ∪ B ∪ C =

(A ∪B) ∪ C = A ∪ (B ∪ C)

iii (Distributivity) A∩(B∪C) = (A∩B)∪(A∩C) and A∪(B∩C) = (A∪B)∩(A∪C)

iv (De Morgan’s laws) (A ∪B ∪ C) = A ∩B ∩ C and (A ∩B ∩ C) = A ∪B ∪ C

While we have used only the sets A,B,C in T5.3.1, we could extend the theorem
to cover any number of sets. For example, the first part of T5.3.1 (iv) can be written
for ` sets, A1, A2, . . . , A` as

(A1 ∪A2 ∪ . . . A`) = A1 ∩A2 ∩ . . . ∩A`.

These theorems and others are often illustrated and visualized using Venn di-

agrams.24 Figures 5.3.1A/B illustrate the intersection and union of two sets A and

B, Figures 5.3.2A/B the intersection and union of three sets A,B,C , and Figures

5.3.3A/B the complements of these quantities, addressed in De Morgan’s laws for the
case of three sets.

Figure 5.3.1 A/B
Intersection and union of two sets

A ∩B A ∪B

24Named for John Venn, 1834-1923.
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Figure 5.3.2 A/B
Intersection and union of three sets

A ∩B ∩ C A ∪B ∪ C

Figure 5.3.3 A/B
Complements of intersection and union of three sets

(A ∩B ∩ C) (A ∪B ∪ C)

5.4 Axiomatic probability

We can now use the concepts and definitions established above, together with
some essential principles or axioms which we will presume must hold for probability,
in order to derive some rules that probabilities must follow. As we build up a set of
such rules, or theorems of the system, we are building a catalogue of results that we
can use in assigning probabilities to certain types of events, or to solving problems

that involve determining probabilities.25 First we will need to make further definitions

25A formal axiomatic system begins with a few unproven statements or axioms which
are presumed to be true, and derives further statements or theorems from them by
deductive logic alone. If therefore we are confident in the truth of the axioms, we

can be equally confident in the truth of the derived theorems.
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of concepts directly related to probability, and will need to write down axioms which
correspond with our concept of probability.

Using the set-theoretic definitions above, we can define events, sample spaces,
probability functions and probability spaces. With these definitions, we will have
assembled the key elements necessary in order to begin to determine probabilities in
practical problems.

Definition 5.4.1: Sample space A sample space, for which we will use the symbol Ω,
is the collection of all possible outcomes of a random experiment.

Definition 5.4.2: Event An event is a subset of the sample space.
Since an event is a subset, we will usually use a notation for an event similar to

that used for a set above, typically an upper case Latin letter.

Definition 5.4.3: Mutually exclusive events Two events A and B, subsets of Ω, are
mutually exclusive if the intersection of these subsets is the empty set, i.e. A∩B = φ.

Definition 5.4.4: Exhaustive set of events A set of events {A1, A2, . . . , Ak} is an

exhaustive set if
⋃k
i=1Ai = Ω, that is, the events A1, A2, . . . , Ak are the only possible

events.

Two mutually exclusive events cannot both happen; each excludes the other.
Note that we have introduced the commonly-used symbol φ for the empty set, that
is, the set which contains no elements. Again, we can also extend this definition to
an arbitrary number ` of events; the events A1, A2, . . . , A` are mutually exclusive if
no two of the sets have any elements in common: that is, Ai ∩Aj = φ ∀i 6= j. (Recall

that the symbols ∀i 6= j are read as ‘for all i not equal to j,’ indicating that the
statement holds for any two subsets Ai and Aj as long as they are not the same; by

contrast, if i = j, then we have Ai ∩ Ai, the intersection of a set with itself, and of
course Ai ∩Ai = Ai.)

We now define a probability function, from which we will later derive rules
for manipulating probabilities that will allow us to solve specific problems (that is,
will allow us to compute probabilities from a probability function, given specific
conditions).

Definition 5.4.5: A probability function P (.) is a function defined on a field, F , of

events, with range the closed interval [0, 1], which has the following properties:

i P (A) ≥ 0 ∀A ∈ F
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ii P (Ω) = 1

iii Let A1, A2, . . . A` be a set of mutually exclusive events in F and define B =

A1 ∪A2 ∪ . . . ∪A`. Then P (B) =
∑`
i=1 P (Ai).

We have used a finite set of events with ` elements, but the definition continues
to hold if we replace ` with∞ and define B = A1 ∪A2 ∪ . . . . Part iii of the definition
may instead by derived as a consequence of this more general statement.

It follows from the fact that F is a field that A1 ∪A2 ∪ . . .∪A` ∈ F , that is, the
union of all of these events is also an element of F . We will need to make a formal
definition of a field, also called an algebra, of events in order to define a probability
space.

Definition 5.4.6: A field or algebra of events F is a collection of events with the
following properties:

i Ω ∈ F
ii if A1 ∈ F and A2 ∈ F then A1 ∪A2 ∈ F
iii if A ∈ F then A ∈ F .

It follows from property (ii) that the union of any finite set of events must also
be in F . If we want to allow a potentially infinite set of events, then we can define
instead a sigma-field or σ-field, in which we have properties (i) and (iii) above and
also

if A1, A2, . . . ∈ F then B = A1 ∪ A2 ∪ . . . ∈ F .

In the rest of this chapter, we will assume that any events discussed come from
a probability space, defined on a field or sigma-field as necessary. While we will not
state this condition explicitly each time, it is important in that it allows us to conclude
that all of the sets constructed from other sets (complements, unions, intersections,

etc) are also contained in the sample space.

We will now treat the three parts of D5.4.5 as the axioms of a formal system, from
which we can derive theorems. By applying valid reasoning (logical or mathematical

operations) to the axioms, new statements that we derive from the axioms (the

theorems of the system) are logically implied by the axioms, and are therefore as
reliable as the axioms themselves, and may be used in proving further theorems
without returning to the axioms alone in each case. A full set of theorems of the
system provides, in this case, a set of rules for defining and determining probabilities
which assumes no more than the axioms stated in D5.4.5. These theorems can then be
used directly in solving problems involving probabilities, since they provide additional
valid statements concerning probability functions.

Theorem 5.4.1 Let A and B be two events in F .
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i Let the sample space be divided into n equally-likely outcomes. Let nA of these
outcomes imply the event A. Then P (A) = nA

n .

ii P (B) = P (A ∩B) + P (A ∩B).

iii P (A ∪B) = P (A) + P (B)− P (A ∩B) = P (A) + P (A ∩B).

iv Let A and B be mutually exclusive events. Then P (A ∪B) = P (A) + P (B).

v Let {A,B} be a mutually exclusive and exhaustive set of events. Then P (A) +

P (B) = 1.

vi P (A) = 1− P (A).

vii P (φ) = 0.

In cases in which we can identify a finite number of equally-likely outcomes, it
is possible to use T5.4.1 (i) directly to obtain probability statements; the remaining
parts of the theorem do not require partition into equally-likely outcomes.

Sometimes when we try to make such a partition, we find that there is a large
number of equally-likely outcomes, and counting them can be extremely cumber-
some. It may be simpler to do the counting using the definitions of the factorial
operator, and of permutations and combinations. These devices will allow us to ex-
ploit the definition and theorem in cases that are too bulky to allow counting cases
unsystematically.

Definition 5.4.7 The factorial operator applied to an integer m, written as m!, is

defined as m · (m− 1) · . . . · 1 = Πm−1
j=0 (m− j) = Πm

i=1i, and 0! ≡ 1.

Definition 5.4.8 The number of possible combinations of k items chosen from a set
of n items is the number of distinct sets of k that can be assembled when order is
not considered (different orderings are considered to be equivalent), and is written

as nCk or
(
n
k

)
.

That is, in choosing combinations of three objects from a set of five, the sets
{A,B,C} and {C,B,A} are considered the same combination. They would be dif-
ferent permutations, however.

The number of combinations can be computed as(
n

k

)
=

n!

(n− k)!k!
.

Definition 5.4.9 The number of possible permutations of k items chosen from a set
of n items is the number of distinct sets of k that can be assembled when different
orderings are considered to be different, and is written as nPk; it can be computed

as nPk = n!
(n−k)! .

We will use these definitions below when we meet problems involving large num-
bers of equally-likely outcomes, which it would be difficult to count without these
expressions.
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5.5 Conditional probability

In what we have seen so far, we have considered probabilities of events without
reference to the occurrence of other events (unless, of course, we are speaking about a
union or intersection of events, in which case we can think of this union or intersection
as defining a new event). The probabilities, treated above, are called unconditional
probabilities. It is also interesting to be able to describe the way in which probability
statements can be made more precise if relevant information from another event is
observed. For example, the probability that a randomly-selected individual will have
a heart attack before age 65 may be a. The probability that a randomly-selected
individual who eats mainly fried foods and saturated or trans fats will have a heart
attack before age 65 may be b > a. The probability that a randomly-selected indi-
vidual with this diet, who also smokes heavily, will have a heart attack before age
65 may be c > b. The information about diet and smoking, on the assumption that
the current state of medical knowledge is correct on these points, is relevant to de-
termining heart attack probabilities; this is useful conditioning information; that is,
when we compute probabilities with this additional information, we may be able to
get more precise answers than if we had simply treated the individual as part of a
general population.

The definition of conditional probability is given in D5.5.1 and is easily illus-
trated with a Venn diagram, as in Figure 5.5.1, if we think of areas as representing
probabilities.

Definition 5.5.1 The conditional probability of A given that B holds, written P (A|B),
is

P (A|B) =
P (A ∩B)

P (B)
.

In Figure 5.5.1, the conditional probability of B given A is equal to the ratio
of the light-shaded area (P (A ∩ B) = P (B ∩ A)) to the dark shaded + light shaded

areas, P (A); i.e. P (B|A) = P (B ∩A)/P (A).

Figure 5.5.1
Conditional probability in sets A and B
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D5.5.1 immediately implies that we can re-write the probability of the intersec-
tion as P (A ∩B) = P (A|B)P (B).

An important result called Bayes’ Theorem or Bayes’ rule26 follows from this def-
inition and from the commutativity property, Theorem 5.3.1 i. We have P (A∩B) =

P (A|B)P (B) and by symmetry (simply re-labeling), P (B∩A) = P (B|A)P (A). Since

P (B∩A) = P (A∩B) by the commutativity property, it follows that P (A|B)P (B) =

P (B|A)P (A), and dividing by P (B) we obtain:

Theorem 5.5.1 Bayes’ Theorem. Let A and B be two events in F. Then

P (A|B) =
P (B|A)P (A)

P (B)
.

A number of other important results can also be stated using conditional prob-
abilities.

Theorem 5.5.2 Let A, B and C be events in F .
i Let P (B) > 0. Then P (A|B) = 1− P (A|B).

ii Let P (B) > 0. Then P (A|B) = P (A ∩ C|B) + P (A ∩ C|B).

iii Let 0 < P (B) < 1. Then P (A) = P (A|B)P (B) + P (A|B)P (B).

iv Let {A,B} be an exhaustive set of events, let A and B be mutually exclusive

and P (A) > 0, P (B) > 0. Then P (C) = P (C|A)P (A) + P (C|B)P (B).

Bayes’ Theorem, in particular, allows us simple solutions to some potentially
tricky problems. For example, consider the well-known problem of interpreting a
medical test result. A test is given which has a false positive rate of 2%; that is,
in people who do not have the condition, the test falsely indicates that they do 2%
of the time (and 98% of the time correctly indicates its absence of the condition).

If an individual does have the condition, the test identifies this 99% of the time.
The condition is present in 1 person out of 1000. If someone receives a positive test
result, assuming that people are randomly selected for testing, what is the probability
of having the condition? Let A indicate that an individual has the condition, and
let B indicate that an individual receives a positive test result. Then P (B|A) =

0.99, P (A) = 0.001, and using T5.5.2 (iii), P (B) = 0.001(.99) + .999(.02) = 0.02097.

Therefore P (A|B) = (0.99 · 0.001)/0.02097, or approximately 4.7%. That is, given
a positive test, the probability that one nonetheless does not have the condition
is 95.3%, and this in a test that might be described loosely as being 98% or 99%
accurate. (If this result appears strange, note that in 1000 individuals randomly
selected for testing, roughly one might be expected to have the condition, whereas
around 20 would be expected to get false positives.)

26First obtained by the Reverend Thomas Bayes, 1702-1761.
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Conditional probability statements are often much more precise and useful than
unconditional statements, because they embody more information. For example, the
unconditional probability that a car will be stolen in Montreal in any given year may

be 1
200 : that is, of all cars legally registered to owners living in Montreal, one in

two hundred of them is stolen in any given year. If we know that someone lives in
Montreal and has a car, but know nothing else, then the best we can do to estimate
his or her probability of having the car stolen is to use the unconditional probability,

1
200 . However, if we have information on relevant conditioning variables, (that is,

variables which help us to predict car theft), then we may be able to make a better
estimate of the probability applicable to this individual. If car is a new BMW, the
owner has had two previous cars stolen within the last five years, and he or she parks
on the street rather than in a garage, then the probability of having this car stolen

in the next year will be much higher than 1
200 .

Of course, not all events or types of information are useful as conditioning in-
formation. For example, learning that an individual grew up on a farm may convey

no information about whether he or she will have a heart attack before age 65.27 In
this example, if A is having a heart attack before age 60 and B is having grown up
on a farm, then P (A|B) = P (A) : event B is irrelevant.

Independence in this statistical sense, often called statistical independence, can
be defined by different equivalent conditions.

Definition 5.5.2a Two events A and B are independent if and only if P (A|B) = P (A)

(for P (B) > 0); equivalently P (B|A) = P (B) (for P (A) > 0).

Definition 5.5.2b Two events A and B are independent if and only if P (A ∩ B) =

P (A)P (B).

The statement of D5.5.2a implies D5.5.2b and vice versa.

Extensions of the many of the results that we have stated above are available for
an arbitrary number of events, rather than just the two events A and B. The next
theorem collects some of these more general forms of result, of which results above
are special cases.

Theorem 5.5.3 Let A1, A2, . . . , A` be events in F . Then

i (Bayes’ Theorem) Where P (A) > 0, P (Ai|B) = P (B|Ai)P (Ai)
P (B) .

27Of course, it is possible that growing up on a farm may confer a lifelong serenity
which lowers pre-65 heart attack risk. To check on this would require investigation
in a multivariate model to control for multiple effects measurable in a cross-sectional

sample of individuals; Chapter 18.
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ii For P (A1∩A2∩. . .∩A`) > 0, we have P (A1∩A2∩. . .∩A`) = P (A`|A1∩A2∩. . .∩
A`−1) ·P (A`−1|A1∩A2∩ . . .∩A`−2) · . . . P (A3|A1∩A2) ·P (A2|A1) ·P (A1). If the

events A1, A2, . . . , A` are independent of each other, then P (A1∩A2∩ . . .∩A`) =

P (A1) · P (A2) · . . . · P (A`).

iii If the events A1, A2, . . . , A` are mutually exclusive, then P (A1∪A2∪ . . .∪A`) =∑`
i=1 P (Ai).

iv If the events are mutually exclusive and exhaustive, then

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) + . . .+ P (B|A`)P (A`).
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Appendix to Chapter 5

Examples of proofs of some simple theorems of the system

Recall:

Definition 5.4.5: A probability function P (.) is a function defined on a field, F , of

events, with range the closed interval [0, 1], which has the following properties:

i P (A) ≥ 0 ∀A ∈ F
ii P (Ω) = 1

iii Let A1, A2, . . . A` be a set of mutually exclusive events in F and define B =

A1 ∪A2 ∪ . . . ∪A`. Then P (B) =
∑`
i=1 P (Ai).

Theorem A1. Let i index a set of mutually exclusive and exhaustive events Ai. Then∑
i∈Ω P (Ai) = 1.

Proof. We could re-write (iii) as P (B) =
∑
i∈B P (Ai), that is, B is the union

of all events Ai and its probability is the sum of the probabilities of all events such
that Ai in B. Now let B = Ω. Then P (Ω) =

∑
i∈Ω P (Ai). But P (Ω) = 1 and so∑

i∈Ω P (Ai) = 1.

Theorem A2. Let the sample space Ω consist of n mutually exclusive and equally
likely events Ci. Then P (Ci) = 1/n ∀i, where i indexes the events.

Proof. We have
∑
i∈Ω P (Ai) = 1 from Theorem A1 and so

∑
i∈Ω P (Ci) = 1 since

the events Ci are also mutually exclusive. Since they are equally likely, P (Ci) = c,

a constant, for all i. Then
∑
i∈Ω P (Ci) =

∑
i∈Ω(c) = nc, since we add up the same

item, c, n times. Then nc = 1, so c = 1/n = P (Ci).

Theorem 5.4.1 i. Let the sample space Ω consist of n mutually exclusive and equally
likely outcomes Ci. Let nA of these outcomes imply the event A. Then P (A) = nA

n .

Proof. From Theorem A2 we have that P (Ci) = 1/n ∀i. Let j = 1, 2, . . . nA
index outcomes that imply event A, which we can label A1, A2, . . . AnA . Since any

one is sufficient to imply A, the probability P (A) is the probability of the union

of these events A1, A2, . . . AnA . Now from D5.4.5 (iii) we know that if A1, A2, . . . A`
is a set of mutually exclusive events, and define B = A1 ∪ A2 ∪ . . . ∪ A`, then

P (B) =
∑`
i=1 P (Ai). In the notation of this theorem, we have A = A1∪A2∪. . .∪AnA ,

and so P (A) =
∑nA
i=j P (Ci) =

∑nA
i=j(1/n) = nA(1/n) = nA/n.

Theorem 5.5.2, (iv): Theorem of Total Probabilities, two-set version. Let {A,B} be

an exhaustive set of events, let A and B be mutually exclusive and P (A) > 0, P (B) >

0. Then P (C) = P (C|A)P (A) + P (C|B)P (B).
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Proof. P (C|A)P (A) + P (C|B)P (B) =

[P (C ∩ A)/P (A)]P (A) + [P (C ∩ B)/P (B)]P (B), substituting from the definition of

conditional probability, and so P (C|A)P (A)+P (C|B)P (B) = P (C ∩A)+P (C ∩B).

Now A and B are mutually exclusive, and therefore P (C∩A)+P (C∩B) = P [(C∩A)∪
(C ∩B)] = P [C ∩ (A∪B)], with the first of these equalities following from Theorem

5.4.1 part (iv) and the latter following from the distributive property, Theorem 5.3.1

part (iii). Finally A and B are also exhaustive, i.e. A ∪ B = Ω, the sample space.

Therefore P [C ∩ (A ∪B)] = P (C ∩ Ω) = P (C).

One of De Morgan’s laws (other direction is similar)

Theorem. Let A andB be two sets in S. Then (A ∪B) = A ∩B.
Proof. Two sets C and D are equal if each is contained in the other, i.e. C ⊂ D

and D ⊂ C. So first we show that (A ∪B) ⊂ (A ∩B).

Consider an individual element γ of the first set, i.e. γ ∈ (A ∪B). Then

γ ∈ (A ∪B)⇒ γ /∈ (A ∪B). Therefore γ /∈ A and γ /∈ B; therefore γ ∈ A and γ ∈ B.
So γ ∈ A ∩ B and any element of the first set (A ∪B) must be contained in the

second set, A ∩B.
Now we show the converse, (A ∩B) ⊂ (A ∪B). Consider an individual element

ν of the set (A ∩ B). Then ν /∈ A and ν /∈ B. Therefore ν /∈ (A ∪ B) (to be in the

union of the two sets A and B, ν would have to be in one or the other). Finally,

ν /∈ (A ∪ B) ⇒ ν ∈ (A ∪B). So any element of the set A ∩ B must be contained in

the set (A ∪B).
Since each set is contained in the other, they are equivalent.
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Chapter 6

Random variables and
distribution theory

This chapter uses the theory of probability described in Chapter 5 to intro-
duce fundamental statistical concepts underlying virtually all statistical analysis. It
provides a set of definitions and quantities which will form a basis for statistical
reasoning and discussion quite apart from any formal analysis, as well as theoreti-
cal counterparts to the descriptive statistics introduced in Chapter 3. In particular,
the concepts of cumulative distribution function, probability function and probabil-
ity density function, expectation and moments (introduced in the next chapter) will
reappear constantly in this book and in other statistical material that the reader will
see.

6.1 Random variables

The random variable is the fundamental unit of statistical analysis. Since it is
not deterministic–its values cannot be predicted with certainty–we require statistical
concepts to describe and predict the outcomes of the random variable and relate it
to other random variables.

D6.1.1 A random variable is a real-valued quantity which depends on a random event.

Because it depends on a random event, the random variable cannot be perfectly
predictable. Note also that this definition makes the random variable a real number,
which rules out some things that we might speak of informally as random variables.
For example, the next car to pass on the street might be made in North America or
elsewhere, and we might be interested in estimating the proportion made in North
America. For each car that passes, we could record the variable yi = ‘NA’ or yi =
‘not NA’, where i indexes the observations, that is, i = 1, 2, 3, . . . for a sequence of
observations. The variable Y which can take either of these values is not a random
variable by the definition above, because these place-of-manufacture labels are not
real numbers. However, if we assign zi = 1 for North American cars and zi = 0 for
others, then the variable Z is a random variable by definition 6.1.1.
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A more formal definition than D6.1.1 would refer explicitly to the probability
theory that we developed in Chapter 5; recall the definitions of sample space, prob-
ability function and field given in Definitions 5.4.1, 5.4.5 and 5.4.6. The following
definition makes D6.1.1 somewhat more precise, and uses the definition of a prob-
ability space, composed of sample space, field of events and probability function,
(Ω,F ,P). Recall that any ω is an outcome from the sample space Ω.

D6.1.2 A real-valued random variable X is a (real-valued) function on a probability

space, X : Ω→ R, such that the set {ω : X(ω) ≤ `} belongs to F for all ` ∈ R.
We are now able to define the fundamental concept of a cumulative distribution

function, or ‘cdf’. Every well-defined random variable possesses a cumulative dis-
tribution function, but does not necessarily possess a probability density function,
another core concept which we will define soon. As with a random variable, we may
define a cdf in different ways and with different degrees of formality. Here is one
definition.

Definition 6.1.3 The cumulative distribution function of a random variable X is a
function FX(x) defined on the real line, with range [0, 1], such that FX(x) = P (X ≤
x) for every real value x.

(Notice that we use an upper-case subscript on the function, indicating the name

of the variable (‘X’) and a lower-case argument (‘x’) indicating a particular value

of the random variable.) We could have written last part of D6.1.3 somewhat more

formally as FX(x) = P ({ω : X(ω) ≤ x}) ∀x ∈ R, again making reference to the

elements ω of the sample space Ω on which the random variable is defined.28

The cdf is sometimes referred to, somewhat informally, as a ‘distribution func-
tion’, omitting ‘cumulative.’ It is however a cumulative function: for any real value x,
it gives the total probability corresponding with all outcomes of the random variable
up to and including x. Because it is a probability, it must be a real number in [0, 1],
as the definition requires.

A number of properties of the cdf follow from the facts that it is a cumulative
function and that its values are probabilities. In particular:

· 0 ≤ FX(x) ≤ 1; limx→−∞ FX(x) = 0; limx→+∞ FX(x) = 1;

· FX(x1) ≤ FX(x2) ∀ x1 < x2;

· limh↓0 FX(x+ h) = FX(x).

The first statement corresponds with probabilities bounded into the interval
[0, 1]; no matter how small x is the probability of being at or below it cannot be

28Some sources define the inequality as strict, i.e. FX(x) = P (X < x). Whether this
difference will have practical importance will depend on the nature of the random

variable, as we will see below.
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less than zero, and no matter how large it is, the probability of being at or below it
cannot exceed one. The second statement reflects the fact that the cdf is a cumulative
function of non-negative values, so it can never decline as x rises. In the third
statement, we use the symbols h ↓ 0 to indicate that h is approaching zero from
above, so that h is positive. This statement is described verbally as ‘right continuity’
and follows from the fact that we used an inequality in D6.1.2; if we had used a strict
inequality, we would have left continuity instead.

A typical cdf looks like the one illustrated in Figure 6.1.1.

Figure 6.1.1
Example of a cumulative distribution function

This figure plots the cdf of a random variable X over the interval [−3, 3], but
this random variable can in fact take any real value, so it is not bounded into this or
any other interval. Because this random variable can (albeit rarely in this case) take
values below -3 and above 3, the value of the cdf at -3 is not zero, but slightly above
zero, and the value at +3 is slightly below 1: in other words, a bit of the probability is

left on each side of the [−3, 3] interval.29 (If X had a lower bound at a and an upper

bound at b, then we would have FX(a) = 0 and FX(b) = 1, but no such bounds exist

here). The fact that the slope is higher near the midpoint of the figure indicates that
there are more realizations of the random variable near the midpoint 0, so that small
increases in the value that we consider raise the cdf more in that region. Notice that
the vertical axis ranges from zero to one, the values that bound the value of the cdf.

The cdf is a theoretical or population quantity, referring as it does to the true

29This is in fact the cdf of a standard Normal random variable; this distribution will

be described in Chapter .
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probability that a random variable lies at or below a particular point. The sample
counterpart, an estimate of the population cdf, is a very straightforward quantity to
obtain; it replaces true probabilities with the sample frequencies of observing values
at or below a point. Although in principle we can define a cdf at any point, the
sample or empirical cdf is usually computed using the sample points as the points
of evaluation of the function. In order to define this empirical cdf it is useful to
introduce first the concept of the order statistics of a sample.

Definition 6.1.4 Let {x1, x2, . . . , xn} be n sample realizations of a random variable X.

Let {x(1), x(2), . . . , x(n)} be the same n values, sorted in ascending order, such that

x(j+i) ≥ x(j) ∀i > 0. The sorted values {x(1), x(2), . . . , x(n)} are the order statistics
of the sample.

Note that x(1) and x(n) are therefore the smallest and largest values in the
sample.

We can now define the empirical cdf.

Definition 6.1.5 The empirical cumulative distribution function or sample cumulative

distribution function is defined at each order statistic as F̂X(x(i)) ≡ ni
n , where ni is

the number of values in the sample less than or equal to x(i) and n is the sample size.

If there are no tied values in the sample, ni = i, because the first order statistic
has one sample value at or below it, the second order statistic has two sample values
at or below it (itself and the first order statistic) and so on. If there are ties, however,

then (for example) the third and fourth order statistics might be equal to the second.
In that case the number of values less than or equal to the second order statistic would
exceed two, because all four of the first order statistics would qualify. The distinction
between samples where there may be ties and samples in which there cannot be ties
suggests the distinction between continuous and discrete random variables, which we
will treat in the next section. First, we will look at a few examples.

Figure 6.1.2 shows two empirical cdf’s based on the country-income data that
were plotted in Chapter 2.
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Figure 6.1.2
Empirical cdf of real GDP, 96 countries, 1960 and 2000

The relatively steep parts of the empirical cdf at lower incomes indicate that there
are relatively many observations in this region; by contrast, the very high-income
regions are relatively flat. The horizontal scales in the two cdf’s differ, reflecting the
fact that incomes were generally higher in 2000, but the shapes are similar.

Figure 6.1.3 shows the empirical cdf of daily percentage returns in the Dow Jones
Industrial Average.
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Figure 6.1.3
Empirical cdf of daily percentage returns

Dow Jones Industrial Average, January-1915–March 2006

In this example there are many data points, over 22,000. Plotting the empirical
cdf nonetheless gives a clear picture of where most of the data lie: most are within a
few percentage points of zero, with rare very large negative or positive returns.

6.2 Continuous and discrete random variables

Some random variables can take on any value in an interval, whereas others can
take on only one of a set of values. Some have elements of both of these qualities. For
example, respondents to a survey may be asked their weight, how many children they
have, and how much time last week they spent watching television. The first of these
can take on any value in some interval (at least if we measure finely enough), while the

second can take on only the discrete values {0, 1, 2, . . .}. In the third case, a number of

people will have the exact value zero (those who watched no television whatsoever),
while the rest will have watched a number of hours which may be anywhere in the

interval from zero to 168, the number of hours in a week.30

The first type of random variable will be called continuous; the word ‘continuous’

30Again this assumes that our measurement is arbitrarily fine. In practice, most
people will report a number of hours which will be a whole number or a simple

fraction, such as 3 1
2 . But in principle any time in the interval (0, 168] hours could

be reported for those who watched some television during the week. We might also
imagine recording this information electronically by a device attached to a television,
which measures the exact amount of time that the television is turned on, to a very

fine unit of time.
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here is used to indicate that there is some (possibly unbounded) interval, with no
gaps, where the variable can take values. The second type will be called discrete,
referring to the fact that there are separated points at which values of the random
variable can arise. In the third case of time spent watching television, it is again
true that any value in an interval is admissible. The random variable nonetheless has
some characteristics of a discrete random variable, in that the exact value zero may
apply to a number of individuals surveyed, whereas other individuals’ values will lies
at different points up to 168 hours so that in sufficiently finely measured data, no
two will have the same value unless it is zero.

In order to make these ideas precise we now need some more definitions. We
begin with the discrete case.

Definition 6.2.1 A random variable is called discrete if the values that it can take on
form a countable set.

In this case the cdf of the random variable may also be referred to as a discrete
cdf.

Since the set of values is countable, the probability of a realization being at or
below some point is the sum of the probabilities associated with every value up to
and including that point, and the sum of the probabilities of all possible values must
be 1. We can define a function which gives these probabilities.

Definition 6.2.2 The probability function fX(x) of a discrete random variable X which

can take on values x1, x2, x3, . . . is the function fX(xi) = P (X = xi), i = 1, 2, 3, . . .

Consider an example from health economics. Figure 6.2.1A-D shows a the hypo-
thetical probability that a randomly selected member of a population will be taking

a given number of medications at the time of sampling.31 (Although these are hypo-
thetical probabilities, they are based on sample values taken from the Survey of the
Health of Canadians , and a number of the features of these probability functions, in
particular male/female differences and age-specific differences, are genuine features

of the population.) The first two figures (A/B) show females and males respectively

for the entire population; the latter two (C/D) show only the probability functions
applying to individuals 75 years of age and older.

31We may consider the figure for 6 medications to represent values of 6 or greater.
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Figure 6.2.1a/b
Probability function for number of medications currently used
A: females 12 years + B: males 12 years +

Figure 6.2.1c/d
Probability function for number of medications currently used
A: females 75 years + B: males 75 years +

The outcomes form a countable set: if one is taking any quantity at all of a
medication, then that medication is included in the set; there can be no non-integer
results.

A traditional example where we can determine the probabilities theoretically is
the probability function for the sum of the values on two dice, which we worked out
in Chapter 5. This probability function is depicted in Figure 6.2.2.
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Figure 6.2.2
Probability function of sum of values on two standard dice

Notice that the probability function for the sum of values on two dice is sym-
metrical around the mean value of 7; as we move to 6 or 8, 5 or 9, and so on the
probabilities fall by the same amount whether we go up or down from the mean. For
number of unemployment spells the function is asymmetrical (skewed right, with a

long upper tail).
For a continuous random variable, we cannot define a set of probabilities as we

have just done for the discrete case; the random variable can take on any value in
some continuum of points, rather than at a finite set of points, and so we cannot
speak of the probability of the random variable taking on a particular value (the

probability at any point is zero, a point being an infinitesimal quantity). Instead we
can compute the probability that the random variable lies in some interval, and we
use the term probability density to reflect this difference.

For example, let X be the amount of time that passes between two trades of a
particular security on a particular stock exchange, measured to an arbitrarily high
precision. Then the probability that the time between two trades is exactly 8 seconds–
that is, 8.000000...– is zero. However the probability of that time being 8 seconds to
the nearest integer number of seconds, that is 7.5 ≤ X < 8.5, is not zero.

In general we can compute the probability that a random variable X lies in an
interval from point a to point b as

P (a ≤ X < b) =

∫ b

a

fX(x)dx,

where fX(x) is the probability density function, which we now define.
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Definition 6.2.3 The probability density function of a random variable X is the func-

tion fX(x) such that
∫ x
−∞ fX(x)dx = FX(x), where FX(x) is the cumulative distri-

bution function of X.

If the derivative of FX(x) exists at the point x, then that derivative is the density

at point x, fX(x).

For discrete distributions, we can compute the probability of a random variable
lying in an interval by the simple sum of probabilities of possible values lying the
interval:

P (a ≤ X < b) =
k∑
i=1

P (xi),

where k is the number of possible values of the random variable lying between a and
b.

Probability functions and probability density functions must possess a few key
properties, which arise because they describe probabilities, and all possible probabil-
ities, for random variables. In particular, they must always give probabilities which
are bounded into the interval [0, 1], and must assign total probability of 1 to the
universe of possible outcomes.

Definition 6.2.4 Properties of a discrete probability function. Let {xi}`i=1 be the set

of all possible values taken by a random variable X. Then if PX(x) is the probability
function of X,

– PX(x) > 0 for xi, i = 1, 2, . . . , `

– PX(x) = 0 for x /∈ {xi}`i=1

–
∑`
i=1 PX(xi) = 1

– FX(xi) =
∑
x≤xi PX(x).

Analogous properties apply to the probability density function for a continuous
random variable.

Definition 6.2.4 Properties of a probability density function. Let X be a continu-
ous random variable which takes values in the interval [a, b]. Then if fX(x) is the
probability density function of X,

– fX(x) ≥ 0 ∀x
– fX(x) = 0 for x /∈ [a, b]

–
∫ b
a
fX(x)dx = 1

– FX(x) =
∫ x
a
fX(x)dx.

If the random variable is unbounded on one or both sides, then we replace
a or b or both with −∞ or ∞; for a random variable unbounded on both sides,∫∞
−∞ fX(x)dx = 1.
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Note that these definitions do not state explicitly, but imply, that PX(xi) ≤ 1

and
∫ d
c
fX(x)dx ≤ 1 for any xj or interval [c, d].

One feature of distribution functions, probability functions or probability density
functions which is often interesting is symmetry or asymmetry.

Definition 6.2.5 Symmetry. A random variable X is symmetrically distributed around
a point µ if (X − µ) and −(X − µ) have the same distribution.

That is, the random variable has the same distribution if we reflect it in a line
drawn at the point µ. Figure 6.2.3a shows a continuous random variable which is
symmetric around the value 2; again, Figure 6.2.2 above showed a discrete random
variable symmetrically distributed around the value 7.

Figure 6.2.3
Probability density function of a symmetrically-distributed random variable

This variable is plotted from -1 to 5, that is 2± 3; its mean is 2. Although
the density is only plotted in this range, it in fact is unbounded in each direction.
Because this is the density of a symmetric random variable, the parts of the density
on either side of the mean are mirror images of each other.

Although we will be introducing a number of standard distributions in Chapter
9, it will be useful to have a few to work with as examples before that point. We will
therefore introduce here the ‘Normal’ or ‘Gaussian’ distribution.

A random variable X having a Normal distribution has the density

fX(x) = (2πσ2)−
1
2 exp

[
− (x− µ)2

2σ2

]
,
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where µ and σ2 are the mean and variance of the random variable. Any finite
mean and any finite positive variance are compatible with a Normal distribution, and
when these two values are specified, the particular Normal density is fully specified:
that is, different densities can be Normal, because they can have different means
and variances, but there can only be one Normal distribution with a given mean
and variance. The standard Normal is the Normal distribution with mean zero and
variance of 1. A commonly used notation for the Normal with mean µ and variance

σ2 is N(µ, σ2), so that the standard Normal is N(0, 1).
Note that the word ‘normal’ should not be taken to indicate that it is normal, or

typical, that data will have this distribution.32 As we will see in Chapter 12, it will
be true that certain functions of data (such as the sum or mean of observations) will
tend to be approximately Normal; however, nothing tells us that observations on a
random variable itself will be Normal, and in fact simple reasoning will often tell us
that data cannot be Normally distributed (because for example the random variable
is bounded or asymmetrically distributed, neither of which is compatible with having
a Normal distribution).

The Normal is a symmetrical and unbounded distribution. The densities of
several Normal random variables having different variances are plotted in Figure
6.2.3b.

32Correspondingly, we will capitalize the word ‘Normal’ in referring to the distribu-
tion because it is a proper name, not an adjective. Some prefer the name ‘Gaussian’
in order to avoid this confusion, referring to the fact that the distribution was used in
justifying the least squares method (Chapter 18) by Carl Friedrich Gauss (1777-1855);

the distribution was however first described by Abraham de Moivre (1667-1754).
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Figure 6.2.3b
Probability density functions of Normal random variables, differing in variance

Note that these Normal distributions look different when plotted on the same
scale, and indeed are different, although they are all Normal. By contrast, the dis-
tribution of Figure 6.2.3a looks like the Normal with variance of 1; however, it is a
different distribution (it is in fact a t−distribution with four ‘degrees of freedom’,

shifted by 2) with some important differences in its properties, as we will see in
Chapter 9.

A density function, unlike a distribution function, may not exist; that is, any
well defined random variable must have a distribution function, but density may
fail to exist because the cdf may not have a finite derivative at one or more points.
Nonetheless, when the density does exist and can be estimated, it can be a revealing
form in which to represent data.

6.3 Estimating probability and probability density functions

We saw earlier that the empirical or estimated CDF, F̂X(x), can be obtained
straightforwardly from the order statistics of the data, and the proportion of the
sample lying at or below particular points.

Estimation of a probability function is similarly straightforward. Consider a
discrete random variable X which can take on any one of k values, or for which
k different values are observed in the sample. We can index these by i = 1, . . . k.
Let any one of the values that X can take be xi. Then the sample probability that
X = xi is ni/N, where there are N sample points in total, and ni of them for which

X = xi. (Note that this is just a re-appearance of one of our first rules for determining
probabilities; in the notation of Chapter 5, let the event A be that X = xi; then
p(A) = nA/N where nA is the same as ni here, i.e. the number of observations
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for which A is true.) The possible values for the discrete random variable form a
mutually exclusive and exhaustive set, so the sum of their probabilities is equal to 1;

similarly
∑k
i=1 ni = N and so

∑k
i=1 ni/N = N/N = 1 and then

∑k
i=1 p̂i = 1 : the

sum of the probabilities of all things that can happen is 1.
Estimation of density functions is not so straightforward, and there is a very

large literature on methods for doing this. We will describe one widely used method,
kernel density estimation, which, when the choice of bandwidth is made carefully,
can produce smooth and efficient (relatively low variance) estimates of the density
function.

To begin, recall that the density is the derivative of the CDF, so that estimation
of the density is estimation of the slope of the CDF. A simple slope estimator is to
take the increase in a function over an interval divided by the width of the interval,
and in the limit as width of the interval goes to zero, we obtain the derivative. For
a random variable X, a point x where we will evaluate the slope, and an interval of
width h centred at the point x, we would have that the slope is

fX(x) = lim
h→0

(1/h)P (x− h/2 < X < x+ h/2), (6.3.1)

where P (x−h/2 < X < x+h/2) is the probability that X lies in the interval x±h/2.
Notice that we divide by h to get a slope over an interval: the increase is divided by
the width of the interval over which the increase arose.

We want to obtain an estimate of this quantity, f̂X(x). Note that we are describ-
ing an estimate at a single point, x; by re-evaluating the estimator at a sequence of
different choices of x, we can plot the full estimated density.

To provide a first estimate, we can use an indicator function. An indicator
function takes the value 1 if a condition holds, 0 if it does not. In this case the
condition will be that a value lies in the interval x± h/2, and the indicator function

is I[xi ∈ x±h/2]. So our first density estimator simply takes the proportion of the N
observations in the interval as our estimator of the probability of the random variable
lying in the interval, to give:

f̂X(x) = (1/Nh)
N∑
i=1

I[xi ∈ x±h/2] = (1/Nh)
N∑
i=1

I[x−h/2 < xi < x+h/2]. (6.3.2)

Notice that we now divide by N as well as h because we are taking the proportion
of the sample points in the interval, and the indicator function counts those points;
in equation (6.3.1), the fact that we refer to a probability means that we have the

theoretical analogue of the sample proportion, and in (6.3.2) we take the actual
sample proportion, which entails counting and dividing by N.

This can provide a reasonable estimate, but notice that the weight that a point
gets in estimating density at point x is either one or zero; if it lies in the interval it
counts as 1 regardless of how close it is to the centre, whereas if it falls just slightly
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outside the interval it counts as zero. We might think that we can obtain a better
estimator by allowing the weight to be at its maximum for a point right near the
centre of the interval (the point at which we’re evaluating the density, x), with the
weight declining gradually as we move away from x. We can do so, and various choices
of weighting function have been proposed. These functions are called ‘kernels’, and
the kernel density function estimator replaces the indicator function with a kernel
function:

f̂X(x) = (1/Nh)
N∑
i=1

K [(xi − x)/h] ,

where h is the bandwidth (or window-width, or smoothing) parameter and the kernel

function K(.) is a real, positive function such that
∫
K(z)dz = 1. Since density

functions possess these properties, often a density such as the standard Normal is
chosen as a kernel weighting function, but common alternative choices are the Bartlett
(triangular, linearly declining weights) or Epanechnikov (inverse parabola). In each
of the latter cases the weights decline to zero but cannot become negative. The

conditions on K(.) just given also ensure that f̂X(x) inherits these properties of a
density function.

Bandwidth choice is critical in kernel density estimation, and too large a band-
width (‘oversmoothing’) will distort the location of the data and shape of the distri-

bution (as well as, in extreme cases, making the estimated density of any data set

simply resemble the shape of the kernel). There is a large literature on how to make
the choice, but whatever method is chosen, the bandwidth should tend to get smaller
as the sample size gets larger; for consistent estimation (that is, the estimated density

will converge on the true density as sample size increases), the bandwidth will have

to shrink toward zero as sample size increases.33

For an empirical example, consider the data represented in Figures 6.2.4A and
6.2.4B, prices paid at selected auctions, 1968–2001, for paintings by any of a set of 152

Canadian artists; there are approximately 8000 observed sale prices in this sample.34

Figure 6.2.4A gives the full empirical cdf of these sale prices. The distribution of sale
prices is clearly asymmetric; the upper tail is quite long (that is, a small proportion
of paintings sell for prices far above the mean, while the lowest prices are much closer
to the mean). The largest price paid exceeded 4.5 million dollars; however, very

few works sold at prices exceeding one million dollars, and most sold for $10,000 or
less. When we plot the entire empirical cdf, therefore, keeping the very high-price
observations on the graph compresses the region where most paintings lie to a very
small part of the horizontal scale. In Figure 6.2.4B we plot only a part of the empirical

33The property of consistency of an estimator will be defined formally below in Chap-

ter 13.
34See Hodgson and Vorkink (2004).
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cdf, comprising paintings which sold for $10000 or less; leaving aside the few very
large observations allows us to see detail in the region where most observations lie.
Figure 6.2.4B reveals more readily that approximately half of sales were at $5000. or
below (F (5000) ' 0.5), and about two thirds at $10000 or below.
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Figure 6.2.4a/b
Empirical cdf of sale prices

Canadian paintings sold at selected auctions, 1968-2001
A: full sample B: prices up to $10,000 only

Notice also that there are many ‘jumps’ in the empirical cdf clearly observable
in the finer scale of Figure 6.2.4B: these reflect the fact that sale prices tend to be at
particular numbers. For example, there are many sales at exactly $5000., but none
at prices between $5001. and $5099.

Figures 6.2.4C and 6.2.4D plot the corresponding probability density functions.
Again, the first of these plots the pdf for the entire sample; the small number of
observations at very high values leads to the large upper tail clearly visible in 6.2.4C,
but makes interpreting the values in the region below $10,000 difficult, because of
the compressed scale. Figure 6.2.4D plots only the part of the pdf pertaining to
observations below $10,000; we now see clearly that the most common sale prices at
auction are in the region of only $1000, and that the density of prices drops steadily
from that point.
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Figure 6.2.4c/d
Estimated pdf of sale prices

Canadian paintings sold at selected auctions, 1968-2001
C: full sample D: prices up to $10,000 only

Although the cdf and pdf contain the same information in different forms, some
conclusions are much easier to draw from the cdf, and others from the pdf.

Many quantities can be computed from the cdf or pdf. In the next chapter we
look at some of the most important of these, the moments of the distribution, and
in particular the expectation.
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Chapter 7

Expectation and moments

One of the most widely applied statistical concepts is that of the ‘average’, or
mean. In this chapter we will define the theoretical quantity corresponding to the
sample mean defined in Chapter 3 and will learn about some of its properties. We
will also define the general concept of population moments, and show that a number
of other moments correspond with sample quantities such as the sample variance.

7.1 Expectation

In the case of a discrete distribution, the expectation or expected value is defined

with a simple sum.35

Definition 7.1.1 Let X be a discrete random variable taking on values in the finite set
{x1, x2, . . . xk}, with corresponding probabilities {p1, p2, . . . pk}. Then the expected
value of X is

E(X) =
k∑
i=1

pixi. (7.1.1)

For example, consider the average value obtained from the sum of two dice. The
expected value of the sum, using the probabilities of the outcomes 2, 3, . . . 12 that we

35Of course, ‘expected value’ does not mean ‘the value that we expect to get’ each
time we draw from a distribution: in fact the expected value may be one which could
not possibly arise. For example, the expected value of the number of children born
to a couple may be 2.1. Expected value does have an simple interpretation as a
monetary value; if we play n times a game with an expected value of $v, then if n
is a large number we will typically gain approximately $ nv. This statement can be
made much more precise using the laws of large numbers and central limit theorems

discussed below.
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obtained earlier, is 2( 1
36 ) + 3( 2

36 ) + 4( 3
36 ) + 5( 4

36 ) + 6( 5
36 ) + 7( 6

36 ) + 8( 5
36 ) + 9( 4

36 ) +

10( 3
36 ) + 11( 2

36 ) + 12( 1
36 ) = (252

36 ) = 7.

We can also define a discrete random variable with an infinite set of outcomes,
as long as the (infinite) set of probabilities continues to sum to one.

Recall that when we defined the sample counterpart of this quantity, the sam-

ple mean, we took a simple sum divided by the number of observations: X =

( 1
N )
∑N
i=1 xi. This sample value will converge to the theoretical or population value

in (7.1.1) because the xi’s will tend to occur in proportion to their population proba-

bilities. If for example p1 ≡ p(x1) = 0.3 and p2 ≡ p(x2) = 0.2, then in the theoretical

expression (7.1.1) we put weights of 0.3 and 0.2 on the values of x1 and x2. In the

sample mean expression, we do not use (or know) these weights: however x1 will

tend to occur 3
2 times as often as x2, so the same weighting will tend to emerge in

large samples without our knowing it a priori. Laws of large numbers (Chapter 10)
formalize this idea.

For a continuous distribution, the expectation is an analogue of (7.1.1).

Definition 7.1.2 Let X be a continuous random variable defined on the interval [a, b]

and having probability density function fX(x) at the value x. Then the expectation
or expected value of X is

E(X) =

∫ b

a

xfX(x)dx. (7.1.2)

If the distribution is unbounded on one side or the other, then we have a =
−∞, b =∞, or both.

The point made above concerning the sample mean continues to apply: in the
sample mean we use a simple sum rather than the integral of X weighted by the pdf,
but values of X will tend to occur relatively often in regions where fX(x) is relatively

high, and the sample mean will again converge to E(X), assuming that the latter
exists.

The expectation has a number of properties that allow us to make statements
about the expectations of quantities related to a particular random variable. The
following theorem summarizes two of these.

Theorem 7.1.1 Let X be a random variable with expected value E(X) = µX ,
and let a, b be constants. Then:

i E(a+ bX) = a+ bE(X) = a+ bµX
ii (Jensen’s inequality) Let g(.) be a convex function.36 Then E(g(X)) ≥ g(E(X)).

36A (real-valued) convex function is such that for any real number xi and point

(xi, g(xi)), there exists a line h(x) such that h(xi) = g(xi) and h(xj) ≤ g(xj) for any

other point xj . That is, at any point, a line tangent to the function lies everywhere

at or below the function.
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Theorem 7.1.1 (ii) is known as Jensen’s inequality. Part (i) of the theorem states
that if we consider the linear function a+ bX, it doesn’t matter whether we take the
expectation first, then plug it into the function, or compute a function of X first,
then take the expectation: the result is the same. Jensen’s inequality states that
for a nonlinear function, this does not in general hold: we get a different result if
we take the expectation of a function of X, versus taking the same function of the
expectation of X. The order of operation matters with non-linearity. If for example

g(x) = X2, then Jensen’s inequality states that E(X2) ≥ (E(X))2 : squaring the
random variable first and then taking its mean will produce a result at least as great
as taking the mean first, then squaring. In the case of a random variable X having
the standard Normal distribution (N(0, 1)) introduced in the last chapter, we have

E(X) = 0, so (E(X))2 = 0, while E(X2) = 1 since the mean of X is 0, so its variance

is E(X2), which by definition of the standard Normal is 1. The inequality is strict
in this case.

For a general function h(x), we can define the expectation of the function of the

original random variable X as E(h(X)) =
∑k
i=1 pih(xi) in the discrete case, and as

E(h(X)) =
∫ b
a
h(x)fX(x)dx for a continuous random variable defined on [a, b]. To

return to the example of two dice, imagine that we play a game in which we receive
a payoff of $5 for every point on the two dice. Then the random variable X is again
the sum of the points on the two dice, h(X) = 5X, and the expected value of the

payoff is given by 5 · 2( 1
36 ) + 5 · 3( 2

36 ) + 5 · 4( 3
36 ) + 5 · 5( 4

36 ) + 5 · 6( 5
36 ) + 5 · 7( 6

36 ) + 5 ·
8( 5

36 ) + 5 · 9( 4
36 ) + 5 · 10( 3

36 ) + 5 · 11( 2
36 ) + 5 · 12( 1

36 ) = (5·252
36 ) = 5 · 7 = 35.

The expected value or mean is the first moment of the distribution. Higher
moments can also be defined by similar expressions, and lead to population quantities
which are estimated by sample quantities in the way that expectation, or population
mean, is estimated by the sample mean.

7.2 Higher moments

Expressions analogous to (7.1.1) and (7.1.2) can be used to define a full set of

raw or central moments.37 These moments–as with the first–may not exist for a given
random variable, but for the moment (that is, for the time being) we will leave this
aside and explore the implications of these definitions.

Definition 7.2.1 The `th raw moment of a random variable is E(X`), ` = 1, 2, . . . .

It follows that for a discrete random variable, the `th raw moment is

k∑
i=1

pix
`
i , (7.2.1)

37The word ‘moment’ is used because of an analogy to concepts from elementary

physics, such as moment of inertia.
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whereas for a continuous random variable it is∫ b

a

x`fX(x)dx. (7.2.2)

Raw moments are affected by the mean of the distribution of the random vari-
able. By contrast, the central moments remove the effect of the mean, so that two
distributions which are identical except for a shift caused by differing means will have
the same central moments of order two and higher.

Definition 7.2.2 The `th central moment of a random variable X is E((X−µX)`), ` =

2, . . . . The second central moment is called the variance, σ2
X ≡ E((X − µX)2).

Note that the first central moment would simply be zero for any distribution.

For a discrete random variable, the `th central moment is

k∑
i=1

pi(xi − µX)`, (7.2.3)

whereas for a continuous random variable it is∫ b

a

(x− µX)`fX(x)dx. (7.2.4)

A number of the descriptive statistics that we defined earlier can now be seen as
estimates, or sample counterparts, of these population central moments. The sample
variance is an estimate of the second central moment (the population variance),
whereas the skewness and kurtosis measures that we defined are functions of the third
and fourth central moments.38 To define these functions, let m2,m3,m4, . . . be the

central moments of a distribution. Then the population variance ism2 = E(X−µX)2,
the population coefficient of skewness corresponding to the sample measure in D3.8
is

m3

(m2)
3
2

, (7.2.5)

and the population coefficient of kurtosis corresponding with the sample measure in
D3.10 is

m4

(m2)2
. (7.2.6)

38We often refer to the square root of the population variance, σ, as the standard

deviation; its estimate or sample counterpart is called the standard error.
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The moments of a distribution, or functions based on them such as these, are
useful as descriptive statistics because they reveal different properties of the distri-
bution. The second central moment, or variance, is an indicator of the dispersion
of values around the mean. The third and other odd-numbered moments are zero
for symmetric distributions since positive and negative values cancel; therefore devi-
ations from zero, scaled to account for differing degrees of dispersion, can be taken

to measure asymmetry.39

The variance or second central moment is of great importance in characterizing
our uncertain knowledge of where an estimated quantity lies, or more precisely in
allowing us to define intervals within which random variables will fall with particular
probability. Chebychev’s inequality (section 7.3 below) provides one way of using the

variance (or its square root, the standard deviation) in this way, although more precise
statements will be possible when we can characterize estimated values as having
particular distributions (Chapters 14–16, in particular). Note that if we are dealing
with a discrete distribution, using the definition of expectation for discrete random

variables D7.1.1, we can translate the expression E(X − µ)2 into
∑k
i=1 pi(xi − µ)2

for this case; for a continuous distribution, using D7.1.2 we obtain that E(X−µ)2 =∫ b
a

(x − µ)2fX(x)dx. Similar expressions for higher-order moments follow also from

the definitions of expectation for discrete and continuous random variables.

Recall that we have E(a + bX) = a + bE(X) = a + bµX for the first moment
of a linear transformation of a random variable. The variance is a central moment,
however, and so the shift by a in a+ bX is subtracted out in computing the variance
and has no effect. In fact it is easy to see, using the notation var(X) for the variance

of X, that var(a + bX) = E[a + bX − E(a + bX)]2 = E[a + bX − (a + bµ)]2 =

E[bX − bµ)]2 = E[b(X − µ)]2 = b2E[X − µ]2 = b2var(X).

As we move to higher order even-numbered moments, we give progressively more
emphasis to the most extreme (farthest from the mean) values in a distribution. To
illustrate this, consider the following mean-zero discrete distributions represented
through their probability functions:

X =



1 (p = 0.49)

−1 (p = 0.49)

10 (p = 0.01)

−10 (p = 0.01)

39Positive and negative values can also cancel, yielding a third moment of zero, for
some non-symmetric distributions; therefore a zero third moment is a necessary, but

not sufficient, condition for symmetry.
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Y =



2 (p = 0.49)

−2 (p = 0.49)

10 (p = 0.01)

−10 (p = 0.01)

Z =



a (p = 0.49)

−a (p = 0.49)

4 (p = 0.01)

−4 (p = 0.01)

where we choose the value a in the definition of Z to give Z the same variance as Y,
which requires a = 2.3904572. Table 1 gives the second, fourth and sixth moments of

these distributions, where the `th central moment is computed using equation (7.2.1)

as E(V − 0)` =
∑4
i=1 piv

`
i for V = {X,Y, Z} and the four possible values vi and

their probabilities, just given; note that each random variable is constructed to have
a mean of zero.

Table 7.2.1
Moments 2,4 and 6 of the random variables X,Y and Z

Central moment X Y Z

2 2.98 5.92 5.92
4 200.98 215.68 37.12
6 20000.98 20062.72 264.78

The second moment of X is less than that of Y and Z; the second moment
computation is dominated by the values that occur 98% of the time. When we look
at the fourth moment, however, X and Y are now close, and far above Z, since Z
lacks the very large values (±10) occuring in the other random variables; by the sixth

moment, the 98% of the distribution composed of relatively small values makes little
difference, and the computation is dominated by the 2% of extreme values. Now X
and Y are very close, while Z’s fourth moment is far smaller despite the fact that
on 98% of values, Z has the larger deviations from the mean. That is, as we go to
higher and higher moments, results are increasingly dominated by the most extreme
values in the distribution.
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With these definitions of moments, we are now able to state the Chebychev
inequality.

7.3 The Chebychev inequality

One of the key questions that we will often want to answer about any distribu-
tion is: what is the probability of an observation above or below a certain value, or
in a certain interval? If we know the form of the distribution, as in examples that
we will see in Chapter 9, then we can usually answer this question in one of various
ways. However, with an empirical distribution of unknown form, we cannot compute
probabilities using methods that depend on knowledge of this unknown mathemat-
ical form. Chebychev’s inequality nonetheless allows us to state a bound (not an

exact value) for one important question of this type, that is, the probability that an
observation will lie in a symmetric interval around the mean. The theorem requires
only weak conditions; nonetheless it is important to note that these conditions do
not always hold, so that the Chebychev inequality does not hold for every possible
distribution.

Theorem 7.3.1 Let X be a random variable having finite mean and variance, µ

and σ2. Then

P (|X − µ| ≥ `σ) ≤ 1

`2
. (7.3.1)

That is, the probability of X being greater than ` standard deviations from its

mean is no greater than `−2. The statement has useful content only for ` > 1, since
for ` ≤ 1 it does not bound the probability to any value below 1. Alternatively,

we can write P (|X − µ| < `σ) ≥ (1 − 1
`2 ) or: the probability that X is less than `

standard deviations from its mean is at least 1 − 1
`2 . Again, note that this is only

a lower bound on the probability contained in the interval of ` standard deviations
from the mean: if we knew the form of the distribution function, then we could
calculate the exact value, which will typically be substantially higher. For example,
the Normal distribution contains about 95% of the probability within two standard
errors of the mean, well above the bound of at least 75% specified by the Chebychev
inequality. Both statements are correct, but the statement based on knowledge of
the exact distribution, where this is available, is more precise.

This inequality can be proved as a consequence of a more general relationship
involving probability and expectation, the Markov inequality, which is stated and
proved in the Appendix:

Theorem 7.3.2 Let X be a random variable and g(.) a non-negative function on

R such that E(g(X)) exists. Then

P (g(X) ≥ `) ≤ E(g(X))

`
∀` > 0. (7.3.2)
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Appendix to Chapter 7

Proof of Theorems 7.3.2 and 7.3.1.40

We begin by proving the Markov inequality: X is a random variable and g(.) a

non-negative function on R such that E(g(X)) exists. Then

P (g(X) ≥ `) ≤ E(g(X))

`
∀` > 0. (7.3.2)

We know that

E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx =

∫
X:g(X)<k

g(x)fX(x)dx+

∫
X:g(X)≥k

g(x)fX(x)dx,

where we have simply split the range over which the function is integrated into two
parts, that for which g(X) is less than some value k, and that for which it is greater
than k. Since neither of the integrals can be negative, we drop the first part, and we
obtain

E(g(X)) ≥
∫
X:g(X)≥k

g(x)fX(x)dx⇒ E(g(X)) ≥
∫
X:g(X)≥k

kfX(x)dx,

where the implication follows from the fact that we’re integrating over cases where
k ≤ g(X), so replacing g(X) by k can only lower the integral, so the inequality
continues to hold. But∫

X:g(X)≥k
kfX(x)dx = k

∫
X:g(X)≥k

fX(x)dx = kP [g(X) ≥ k],

where the latter equality follows from the fact that we are simply integrating the
probability density function over values for which g(X) ≥ k, so we obtain the prob-

ability that g(X) ≥ k. Therefore

E(g(X))

k
≥ P [g(X) ≥ k].

40These proofs are based on those given by Hogg and Craig (1959) and Mood et al.

(1974).
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In order to prove the Chebychev inequality from this statement, we make a

choice of function g(X) and of k, and in particular g(x) = (X−µ)2, k = `2σ2, where

µ and σ2 are the mean and variance of X. Substituting into the last line of the proof
above, we have

E(X − µ)2

`2σ2
≥ P [(X − µ)2 ≥ `2σ2].

Since E(X−µ)2 = σ2, σ2 cancels from top and bottom on the right-hand side of the
inequality, leaving us with

1

`2
≥ P [(X − µ)2 ≥ `2σ2], or

P [(X − µ)2 ≥ `2σ2] ≤ 1

`2
, or

P [|X − µ| ≥ `σ] ≤ 1

`2
.
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Chapter 8

Joint and conditional
distributions

So far we have discussed only one random variable at a time. Often this is
not sufficient: the relationships among random variables (and therefore among data

series that we may measure) are some of the most interesting things that we can
learn about through statistics.

When we discuss a joint distribution of random variables, we are referring to
the way in which two or more random variables are distributed in relation to each
other, and we can ask for example not just how likely it is that X = 1, (to take a

discrete case), but how likely it is that X = 1 when Y = 2, or when Y = 3. These

variables have individual (‘univariate’ or ‘marginal’) distributions, as we would use if
we were analyzing them one at a time, but the joint distribution can reveal additional
information. When we treat joint distributions, we are able to define corresponding
quantities of interest such as the covariance, correlation, and conditional probability
which help us to describe some of the relationships among variables just as the sample
mean or variance help us to describe a single variable.

8.1 Joint discrete and continuous distributions

A joint cumulative distribution function is defined analogously to the CDF for a
single random variable, and is again a quantity that exists for any well-defined random
variable and so is a fundamental element in our treatment of random phenomena.

Definition 8.1.1 The joint cumulative distribution function of a set of k random
variables X1, X2, . . . , Xk is a function FX1,X2,...,Xk(x1, x2, . . . , xk) defined on the real

line, with range [0, 1], such that

FX1,X2,...,Xk(x1, x2, . . . , xk) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk, )

for every set of real values x1, x2, . . . , xk.
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The joint CDF therefore describes the probability that a condition holds on
each one of k random variables. For example, consider the joint distribution of two
approximately continuous random variables that we could measure in a survey of indi-

viduals’ incomes and net asset values.41 Then we might be interested in F (20, 000, 0)

and F (100, 000, 0), the cumulative probabilities that an individual has income up to

$20,000 and has negative or zero net assets, and that an individual has income up
to $100,000 and has negative or zero net assets. Note that the latter number, per-
haps counter-intuitively, is higher: we are not describing only people with incomes of
$100,000 (who are less likely to have net debt than people with incomes of $20,000),
but rather we describe the probability that two conditions both hold: income is less
than some value, and net assets ≤ 0.. The higher the income that we specify, the
more people will fulfill the first condition and the higher will be the cumulative prob-
ability (unless there is absolutely no one with income between $20,000 and $100,000

who has net assets ≤ 0.)

A joint distribution may also include a mix of continuous and discrete random
variables. Consider the joint distribution of individual income and years of formal
schooling, where the latter is measured as an integer. In this case the joint distri-
bution of the continuous random variable ‘income’ and the discrete random variable
‘years of schooling’ is a set of functions describing the accumulation of probability
as income increases for any value of the number of years of schooling, increasing to
higher levels as we move discretely to higher values of the number of years.

8.2 Conditional distribution functions

Conditional distributions describe random variables when information about one
or more other random variables is also available. Because the links among different
variables are among the most interesting features of economic data, our data analy-
sis typically involves conditional distributions, implicitly or explicitly. For example,
when we forecast a random variable we will usually consider an expected value given
(‘conditional on’) values of the same or other random variables observed in the past.
As another example, when we try to understand an economic process such as an in-
dividual’s income, we consider what income is likely to be conditional on information
about education, age, place of residence, and so on. It may be interesting to know
that mean income of full-time workers in a given country and time are (e.g.) $54,000

41As usual in economic data we have to be careful to define precisely what we are
measuring. By income we would normally mean income as defined in an income
tax code, which would therefore include not only employment income but also rental
income, interest and dividend income, and taxable capital gains income. We might
prefer a different measure, including not only earned income, but the true change in
value of capital assets, but this may be unavailable to us. The value of the individual’s
net assets may be similarly difficult to obtain, and we might use a simple measure
comprising an approximate value of real estate assets, pensions, and net financial

assets at a particular point in time.
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(the unconditional mean); it may also be useful that, for a worker aged 55 with a

professional degree and living in Vancouver, mean earnings are (e.g.) $78,500 (the

conditional mean, given the three pieces of information just mentioned).

It may be easiest to understand conditional distributions by beginning with a
simple discrete example. In Table 8.2.1 we illustrate a case of two jointly distributed
discrete random variables, each of which can take on only three values (-1, 0, 1 for X;

2,3,4 for Y ). The table gives the probabilities of each of the pairings (xi, yj), i, j =
1, 2, 3.

Table 8.2.1
Example of a joint probability distribution

for two discrete random variables

X = −1 X = 0 X = 1

Y = 2 0.16 0.39 0.20
Y = 3 0.08 0.08 0.04
Y = 4 0.01 0.03 0.01

The table indicates, for example, that the probability that Y = 2 and X = −1
is 0.16; similarly, P (Y = 4, X = 0) = 0.03. This table fully describes the discrete
joint distribution, and we can use it to make both unconditional and conditional
statements.

By adding the columns, we can see that P (X = −1) = 0.25 = (0.16 + 0.08 +

0.01), P (X = 0) = 0.50, and P (X = 1) = 0.25. Adding the rows, we have P (Y =

2) = 0.75, P (Y = 3) = 0.2, P (Y = 4) = 0.05. These unconditional (or ‘marginal’, a
traditional term reflecting the fact that the unconditional probabilities were written
in the margins of tables such as this) probabilities do not refer to the value of the
other random variable.

Now consider the case in which Y = 4. This condition holds with p = 0.05; the
joint probability that Y = 4 and X = 0 is 0.03. That is, of the 5% of probability

accounted for by cases with Y = 4, 60% ( 0.03
0.05 ) involves X = 0 as well; the probability

that X = 0 given that Y = 4 is 0.6. When Y = 3, which accounts for 20% of total

probability, the (conditional) probability that X = 0 is only 0.4 ( 0.08
0.20 ): of the 20%

of total probability accounted for by the Y = 3 case, 40% entails X = 0 as well.
These two conditional probability statements can be expressed as P (X = 0|Y =

4) = 0.6; P (X = 0|Y = 3) = 0.4. Note that each of these conditional probabilities
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differ from the unconditional P (X = 0) = 0.5; knowing the value of Y helps us
to refine out knowledge of the distribution of X, and the conditioning information
concerning Y has value. Note also that the probability that the condition will arise
is irrelevant to the calculation: we are computing the probability of X being 0 if Y
is 4, and the probability that Y actually does have the value 4 is irrelevant, as long
as it is not zero. The probability of Y taking on the given value is relevant to the
joint probability but not to the conditional.

The information in the table also allows us to make statements conditional on
X. For example, P (Y = 4|X = 0) = 0.03

0.50 = 0.06, slightly higher than the uncon-

ditional probability that Y = 4; P (Y = 2|X = −1) = 0.16
0.25 = 0.64, lower than the

unconditional P (Y = 2) = 0.75.
In each of these cases, we compute the conditional by dividing the joint proba-

bility (the probability that both conditions hold) by the probability of the condition,
because we want to compute a proportion of the total probability accounted for by the
condition that we use. We can formalize this in the following definitions (given here

for two random variables, although these can be extended to an arbitrary number).

Definition 8.2.1 The conditional probability function of Y given X for two jointly
distributed discrete random variables with joint probability function PX,Y (x, y) is

defined as

PY |X(y|x) =
PX,Y (x, y)

PX(x)
, for PX(x) > 0.

An analogous definition applies to the continuous case, where we use the density
function.

Definition 8.2.2 The conditional density function of Y given X for two jointly dis-
tributed continuous random variables having the joint probability density function
fX,Y (x, y) is defined as

fY |X(y|x) =
fX,Y (x, y)

fX(x)
, for fX(x) > 0.

Note that the discrete conditional probability function and the continuous con-
ditional density function have the properties that each takes on non-negative values,
the sum of the conditional probabilities across all outcomes yi is 1, and the integral
of the conditional p.d.f. with respect to Y is 1.

8.3 Independence

We indicated above examples in which conditioning information was useful, be-
cause that information allowed us to make a probability statement specific to given
circumstances, as opposed to relying on probability statements applicable on average
across various circumstances. However, information that we might condition on is
not always useful; sometimes two random variables tell us nothing about each other.
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We can formalize this through the concept of statistical independence of random
variables, analogous to the statistical independence of two events defined in Chapter
5.

Definition 8.3.1 Two continuous random variables X and Y with joint probability
density function fX,Y (x, y) are statistically independent if and only if fX,Y (x, y) =

fX(x)fY (y).

The analogous definition holds for discrete random variables where we use the
probability function instead of the p.d.f. As in the previous section, we have used
two random variables in the definition, but the same holds for any number of random
variables: if a set of random variables are statistically independent, then the joint
p.d.f. is equal to the product of the densities of the individual random variables.

Recall the definitions 8.2.1 and 8.2.2 of conditional density or probability func-
tions. In the continuous case, for example, we can re-arrange the definition to state
that fX,Y (x, y) = fY |X(y|x)fX(x) or fX,Y (x, y) = fX|Y (x|y)fY (y). Consistency with

definition 8.3.1 then implies that, if the two random variables are independent,
fX|Y (x|y) = fX(x) and fY |X(y|x) = fY (y) : that is, the conditional distributions

of X given Y and Y given X are the same as the unconditional distributions of X
and Y ; neither random variable conveys any information about the distribution of
the other.

It can be difficult to think of economic variables that are literally independent
of each other, although independence may be a reasonable approximation in many
cases. For example, we might imagine that (within the class of people who own cars)
the colour of an individual’s car has nothing to do with his or her income, so that
these two variables are independent. However, numerous mechanisms could create a
weak relationship between the two, and break independence. Perhaps green cars are
unfashionable, therefore cheaper to buy used, so lower-income people may be more
likely to buy used green cars. Perhaps the mix of colours produced in new cars has
tended to change, with more silver cars and fewer blue cars produced than six or
seven years ago. In this case higher income people, who are relatively likely to have
new cars, will be relatively likely to own silver cars and relatively unlikely to own
blue ones. While it is hard to imagine such effects being very strong, even a tiny link
is sufficient to break independence.

8.4 Covariance and correlation

The concepts of covariance and correlation are extremely widely used, and often
used in misleading arguments involving non-experimental data, so it is particularly
important for students of such data to understand clearly what is implied by these
concepts.

Recall that in Chapter 7 we defined the (population) variance of a random

variable X as E(X−µ)2, the mean of the distribution of the random variable (X−µ)2.
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We also define covariance as the mean of the distribution of a new random variable
formed from the underlying variables X and Y.42

Definition 8.4.1 The covariance between two random variables X and Y is defined as

cov(X,Y ) = E(X − µX)(Y − µY ).

The covariance has a number of limitations for practical purposes, which lead
us to work with a transformation of it (the correlation) in many circumstances. For
example, we might be interested in the way in which changes in new vehicle purchases
(X) move with changes in the oil price (Y ). If we measure new vehicle purchases in
thousands instead of individual units, the variable X and its mean µX will be smaller
by a factor of 1000, so by D8.4.1 the covariance will be smaller by 1000 as well; the
covariance is not independent of scale. Relatedly, the covariance can take any value,
so we cannot point to any value of the covariance as being objectively large or small,
indicating a strong or weak relation. By transforming to correlation, we remove these

difficulties.43

Definition 8.4.2 The correlation between two random variables X and Y is defined
as

corr(X,Y ) =
E(X − µX)(Y − µY )

σXσY
, σX , σY > 0.

Recall that we have used the standard notation σ2 for the variance of a random
variable, so that σX , σY ) are the standard deviations of the two random variables.

The correlation is free of scale effects. If we measure new vehicle purchases in
thousands instead of units, we take a factor of 1000 out from both the numerator
(X−µX)) and the denominator (σX), and the correlation is unaffected; any scaling of
either random variable enters numerator and denominator and cancels. Moreover, the
correlation always lies in the interval [−1, 1], a fact which follows from the Cauchy-
Schwarz inequality.

42It is assumed in D8.4.1 that the expectation exists; otherwise the covariance is not
defined. Recall from the earlier definition of an expectation that we can write

cov(X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

(X − µX)(Y − µY )fX,Y (x, y)dxdy,

and so as usual the existence of the expectation depends on existence of an integral.
43We again assume the existence of the expectations (plural, because σX and σY are

also defined by expectations) in making this definition.
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Theorem 8.4.1 Let W and Z be two random variables with E(W 2) and E(Z2) <

∞. Then (E(WZ))2 ≤ E(W 2)E(Z2); (E(WZ))2 = E(W 2)E(Z2) if and only if

P (W = kZ) = 1 for some k.

The latter condition, that P (W = kZ) = 1, essentially states that W is simply
a re-scaling of Z except possibly on a finite set of points.

The proof that |corr(X,Y )| ≤ 1 is listed as an exercise at the end of this chapter.
This result means that we can always think of values near 1 as ‘high’ correlations,
near zero as ‘low’, and so on.

A positive correlation means that relatively high (i.e., above the mean) values of
one variable have some tendency to be accompanied by relatively high values of the
other; conversely a negative correlation implies means that relatively high values of
one tend to be accompanied by relatively low values of the other. In either case, if
the absolute value of the correlation is near zero, this tendency is weak and may be
difficult to spot in empirical data.

Correlation never implies causation, but it seems to be a constant temptation
to empirical researchers to think in this way. In some cases, of course, a causal link
can be responsible for a correlation, but in others a correlation may arise because
each of two variables is linked to some underlying third factor or set of other factors,
while having no direct impact on the other. For example, income and education
are positively correlated in cross-sectional samples of individuals. In this case there
is almost certainly a causal link: education tends to expand opportunities, allow-
ing individuals to choose higher-income employment (although there are many well
known examples of very wealthy people, usually self-employed, who dropped out of

school early).44 We infer causality from reasoning about the way in which markets
for skilled labour function, however, not from the existence of a positive correlation.
As another example, in samples of people of approximately the same age, consump-
tion of champagne and strawberries may be negatively correlated with indicators of
health problems such as number of doctor visits, days spent in hospital, number of

medications prescribed, etc.45 While there may be some protective impact on health
of champagne or strawberry consumption (or some negative effect, particularly in

extreme champagne-consumption cases), the more important effect seems likely to
be that individuals champagne and strawberry consumption will tend to be higher in
higher-income individuals, who also tend to have fewer health problems (a fact often
explained by their being better able to afford health-related services, better able to
avoid unhealthy conditions, and being on average better informed, being on average
better educated as well). Other hidden factors, not direct causation, are behind the
correlation.

44Don’t try this at home.
45The author has never seen a study to this effect, but is inclined to guess that it’s

true.
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8.5 Conditional expectation

Conditional expectation is another concept that is very widely used in analyzing
the relationships among economic variables. It is defined using the conditional density
function defined earlier.

Definition 8.5.1 The conditional expectation of a continuous random variable Y, con-
ditional on a continuous random variable X taking the value x, is

E(Y |X = x) =

∫ ∞
−∞

yfY |X(y|x)dy.

An analogous definition applies to discrete random variables.
Although we are conditioning on a particular value of the random variable X

in making this definition, and so use the notation ‘E(Y |X = x)′, we also frequently

write simply E(Y |X).

Conditioning on a particular value of a random variable allows us to make more
informative statements than we can make by using the unconditional expectation
alone. For example, consider annual earnings in a sample of people whose incomes
are available from tax records. The mean earnings in the group of people that we
sample may be, say, $51 245. If we pick out a person at random from the sample,
then, this might be the best estimate of what that person’s earnings will turn out to
be. But if we have other information, for example the individual’s age and number of
years of schooling, we may be able to make a more precise statement; earnings tend
to increase with age, up to a certain point, and tend to increase also with number
of years of schooling. So if we observe an individual aged 52 with 16 years of formal
education, we would expect income above the overall mean (since 52 and 16 are

relatively high values of variables associated with higher income).

The function relating the conditional expectation of a random variable to the
conditioning variables is called the conditional expectation function, and is also called
the regression function. Linear functions are often used to approximate the condi-
tional expectation function in empirical work; correspondingly, linear regression is a
technique which is extremely commonly applied in empirical economics and finance.
In the example just given, a linear conditional expectation function could be written
as

E(Y |X1, X2) = a+ bX1 + cX2, (8.5.1)

where Y is income, X1 is age and X2 is years of formal education. The parameters of
this linear model,a, b, c, can be estimated by a variety of techniques; Chapter 18 gives
an introduction. Of course, conditional expectation functions can also be non-linear,
and non-linear functions or functions of unknown form can also be estimated using
standard statistical techniques.

Notice that the relationship given in equation 8.5.1 simply refers to the mean
of the distribution of Y given values of X1 and X2; it does not imply that other

100



variables are irrelevant (that is, a more elaborate conditional expectation function

could be written if we observed additional conditioning variables), and it does not
imply a causal link between the values X1, X2 and Y.

8.6 The bivariate Normal distribution

In Chapter 6 we introduced the univariate Normal distribution. The bivariate
Normal is a straightforward extension, and a simple example of a joint continuous
distribution. Inspecting the graphs of densities of some examples of bivariate Normals
can help improve out intuition about joint and marginal distributions, correlations,
and so on. Since this distribution involves two Normally distributed random vari-
ables, the form of the joint distribution will depend on the correlation between them;
the definition will involve therefore not only the means and variances (or standard

deviations) of each random variable, but an additional parameter representing the
correlation between the two.

For two jointly Normally distributed random variables X1 and X2, having means
µ1 and µ2, and standard deviations σ1 and σ2 respectively, and with correlation ρ,
the joint probability density function is

f1,2(X1, X2) = [2πσ1σ2(1− ρ2)
1
2 ]−1

· exp

[
− 1

2(1− ρ2)

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)]]
.

Since the term in the exponential is scaled by a negative quantity, the density
is higher where the inner term in square brackets is smaller. Therefore the density is
higher as X1 is close to its mean, X2 is close to its mean, and (to make the final term

small) the deviations of each from their means have the same sign if ρ is positive,
opposite signs if ρ is negative. Note that the third term in the inner square brackets
can be no larger than the sum of the other two, so that this whole term is always
positive.

Figure 8.1.1 A/B graphs the densities in two simple cases of equal variance for
each random variable, and correlation of zero between them. Probability density
drops off symmetrically in any direction around the peak, which lies above the point
on the plane where each random variable is equal to its mean. Contour lines (lines

joining points of equal height) on these graphs would be circles. In Figure 8.1.1B the

means are shifted to (2,2) rather than (0,0); the graph is correspondingly moved so
that its peak lies over this point, but has the identical shape.

In Figure 8.1.1C the correlation between the two random variables remains zero,
but they now have different variances; one of the random variables has a marginal
distribution like the flatter density in Figure 6.2.3B (v.i. Chapter 6), the other
has marginal distribution more like the most peaked distribution in Figure 6.2.3B.
Similarly, in the multivariate case probability density drops more quickly from the
peak along the axis representing movements in the lower variance random variable,
more slowly for the high variance random variable.
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Figure 8.1.1D embodies a non-zero (positive) correlation between the two random
variables. We now see that density is relatively high along and near the axis where

X1 = X2, reflecting the term −2ρ
(
x1−µ1

σ1

)(
x2−µ2

σ2

)
in the joint density. In Figures

8.1.1.E and 8.1.1.F we plot joint densities with higher values of the correlation ρ, and
as ρ approaches 1, we see that scaled (by standard deviation) discrepancies between
each variable and its mean are close to being identical, so that the joint density
approaches a two-dimensional curve.
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Figure 8.1.1.a/b
Bivariate Normal densities

σ2
1 = σ2

2 = 1; ρ = 0
A: µ1 = µ2 = 0 B: µ1 = µ2 = 2

Figure 8.1.1.c/d
Bivariate Normal densities

µ1 = µ2 = 0;

C: σ2
1 = 4, σ2

2 = 1
2 , ρ = 0.0 D: σ2

1 = σ2
2 = 1, ρ = 0.5
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Figure 8.1.1.e/f
Bivariate Normal densities
µ1 = µ2 = 0; σ2

1 = σ2
2 = 1;

E: ρ = 0.90 F: ρ = 0.98

joint discrete distribution joint cts: plot joint Normals marginal and conditionals
relation to conditional probability conditional probability computations from joint cts
distributions
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Chapter 9

A few standard distributions

In previous chapters we discussed properties of distribution, probability and
(where they exist) density functions in general. In this chapter we will look at
examples of specific distributions with known properties.

Although we can estimate CDF’s, PDF’s or probability functions from data with-
out imposing any functional form, there are a number of reasons for being interested
in specific forms.

First, in some circumstances, theorems such as central limit theorems will tell
us that a specific form should provide a good approximation to some quantity that
interests us (a central limit theorem tells us that, under some conditions, a sample
mean will have a distribution that converges toward the Normal as sample size in-
creases; Chapter 10). As well, relations among these known distributions may allow
us to deduce that if one distribution applies to a given random variable, it follows
that another distribution will apply to a function of that random variable. For ex-
ample, the square of a Normal random variable, standardized to zero mean and unit

variance, will have a χ2
1 distribution (that is, the Chi-squared with one degree of

freedom).

In other circumstances, empirical experience may suggest that some distribution
provides an adequate approximation. For example, the Pareto distribution has long
been used to describe distributions of income beyond some threshold point. As well,
we can sometimes use a particular distribution as a base and generalized it to embody
information gained from further empirical experience. For example, the t− distribu-
tion embodies thicker tails than the Normal (that is, a greater relative frequency of

extreme events), but although the relatively thick tails of low-degree-of-freedom t−
distributions have been found useful in some problems involving asset return data,
the symmetry of the t− has turned out not to be strictly valid in important cases.
Generalizations of the t− to allow different upper and lower tail thickness, and other
forms of asymmetry, were developed to improve modelling in such cases.

When we do have a specific functional form that provides an adequate approx-
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imation, there are a number of advantages. We can compute important quantities
such as tail area probabilities or probabilities of values occuring between two points,
from the known function. If the known form truly is an adequate approximation, we
can take advantage of the ability to estimate the entire form of the distribution from
only a few parameters (for example, the mean and variance fully characterize a Nor-
mal density, so if we feel confident in using a Normal to fit some data, we need only
estimate the mean and variance to estimate the full density, via the known functional
form).

When unfamiliar problems arise, a specific distribution may give us a quick first-
round approximation in a problem, if we can answer a few simple questions about
the distribution (Continuous or discrete? Skewed or approximately symmetric? Are
the data bounded to a particular region, such as the positive integers or positive
reals?). That being the case, it’s useful to have a catalogue of potential distributions
in mind. This chapter will indicate a few, but there are large references available
that list many more.

9.1 Discrete distributions

We will represent these distributions in the form of their probability functions.
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9.1.1 Uniform

The uniform distribution may describe either discrete or continuous random
variables. In the discrete case, it indicates that the probability is the same on each
of the finite number of possible outcomes. If we have a uniform distribution on the
integers from a to b inclusive, then there are b−a+1 values in total. If X is a random
variable having this distribution, its probability function is then:

pX(x) = (b− a+ 1)−1, x ∈ I, a ≤ x ≤ b.

It is easy to check the condition that
∑x=b
x=a pX(x) = 1.

The following figure plots two uniform probability densities, over the integers
from 1 to 10 and 1 to 6 respectively. Note that the sum of the probabilities is 1 in
each case.

Figure 9.1.1 a/b
Discrete Uniform probability functions

The uniform distribution has an interesting and useful feature (which we will

revisit below when we discuss the continuous case): for any random variable z, if z

has cumulative distribution function F (z), then a sample of values F (zi) will have
the uniform distribution. That is, if we take sample of values z1, z2, . . . zn, then this
sample has the distribution F (.). But if we apply F (.) to each sample point, to find
the value of the cdf at that point, then the distribution of this new set of values is
uniform on [0,1]. So if we think that we know the distribution function applying to

a sample of data, we can compute sequence of values F (zi) and this sequence should

be Uniform on [0,1] if we are correct in our belief about the distribution function.
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9.1.2 Binomial

Consider a situation in which there are two possible outcomes, so that the ran-
dom variable of interest X can take only the values x1 or x2, with corresponding
probabilities p and 1− p. For example, we might be flipping a coin, asking a survey
participant which of two political parties he or she will vote for, or recording the
response to it I guess-or-no question. In n such instances (n outcomes of the random

variable X) we can have any integer number between 0 and n of x1’s or of x2’s,
where of course the numbers of each sum to n. The binomial distribution describes
the probabilities of each of the possible overall outcomes of n samples: zero x1’s and
n x2’s, one x1 and n− 1 x2’s, and so on.

Let ω be the number of x1’s in the sample of n realizations of X. Then the
probability function is

P (ω) =
n!

ω!(n− ω)!
pω(1− p)(n−ω), for ω = 0, 1, 2, . . . , n.

A special case of this, for n = 1, is the Bernoulli distribution, i.e.

P (x) = px(1− p)(1−x), for x = 0 or x = 1,

with P (x) = 0 otherwise. The random variable ω, which has the binomial distribu-
tion, can be thought of as the number of x1’s in n independent Bernoulli trials.

The probability p is sometimes described as the probability of ‘success’, but of
course it can be the probability of either of two specific outcomes. The following fig-
ures show binomial distributions for two different numbers of trials and two different
probabilities p of ‘success’. For example, the first of these figures considers 12 trials
with the probability of success of 50%. We can read the first of the graphs as giving
us the probability that, in 12 trials, we would get exactly one success, or exactly two,
or exactly three, and so on up to the maximum of twelve, where the probability is 0.5.
the second graph, on the right, gives the same set of probabilities for each possible
outcome, but this time where the probability of success is 0.2 each time rather than
0.5.

The second block of graphs, with 50 trials, may look a bit like the Normal
distribution. This is not a coincidence; the chapter on the central limit theorem below
explains why the binomial distribution in fact converges to the standard Normal.
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Figure 9.1.2 a–d
Binomial probability functions
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9.1.3 Poisson

The Poisson distribution is sometimes used to model data that are counts of the
number of times that something occurs. It is therefore defined over the set of whole
numbers {0, 1, 2, . . .} : something that is being counted can happen either zero times,
or one time, or twice, or three times, and so on. The probability function for the
outcomes x = 0, 1, 2, . . . is defined as a function of a strictly positive parameter λ :

P (x) =
λx

x!
e−λfor x = 0, 1, 2, . . . .

The graphs show probability functions for λ = 2 and 5.

Figure 9.1.3 a/b
Poisson probability functions
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9.2 Continuous distributions

Continuous distributions will be depicted using their probability density func-
tions. It is relatively easy to show several of these densities at the same time, so we
will now combine several parameter values or sets of parameter values into a single
graph.
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9.2.1 Uniform densities

As we said earlier, the Uniform also has a continuous form. Let a random
variable X be uniform on the continuous interval [a, b], which we write U(a, b); then
its density is

fX(x) =

{
(b− a)−1, x ∈ [a, b],

0 otherwise.

If z is any continuous random variable with cumulative distribution function
F (.), we again have that the cdf of F (z) is U(0,1).

Notice that in the following graph it is easy to calculate that the area under any
one of these densities is exactly one. This is of course true of the other continuous
densities as well, although this may be harder to see in the other examples that
follow.

Figure 9.2.1
Continuous uniform densities
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9.2.2 Normal densities

The Normal distribution is extremely widely used, partly for good reason, partly
for not-so-good reasons.

The good reason is that central limit theory, to be discussed in a later chapter,
tells us that under quite a wide range of circumstances, a sum or average of random
variables will have a distribution that converges on the Normal. So when one is
working with sums or averages, it is often sensible to use the Normal to approximate
their distribution.

However, many data are generated by processes that are not summed or aver-
aged, and the Normal distribution is sometimes lazily applied to data whose distribu-
tion is of unknown form. A moment’s reflection will tell us that many data series will
be skewed or bounded on one side, for example, and so cannot strictly be Normal.
As well, the Normal distribution has very thin tails: that is, the relative frequency
of extreme events is quite low relative to what arises in many other distributions.
The Normal is inadequate to characterize the proportion of extreme events that arise
in many random processes. This is something to be particularly wary of in finan-
cial data, where Normal distributions will often provide very poor fits to details of
data, and if they are used inappropriately the risk of extreme events can be severely
underestimated.

We have already defined the Normal density; again, it is

fX(x) = (2πσ2)−
1
2 exp

[
− (x− µ)2

2σ2

]
,

a function of the mean and standard deviation parameters, µ and σ > 0.
Notice that different standard deviation (scale) parameters σ change the ap-

pearance of the distribution substantially; some of these Normal distributions look
less like the stereotypical (‘bell’-shaped) Normal than do the t− distributions in the
following section. Appearances can be deceiving.
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Figure 9.2.2
Normal densities
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9.2.3 (Student’s) t− densities

The t− distribution arises in testing problems, where a standard Normal random
variable is divided by an estimated standard error, which under some conditions will

have a χ2 distribution. While the conditions required for an exact t− distribution to
arise in these testing problems are often not met, the t− is nonetheless widely used,
in part because it provides a slightly more conservative test then does the use of the
asymptotic Normal which would be justified under a wider set of circumstances for
the same testing problems. The t− distribution has a degrees of freedom parameter,
and as that parameter increases without bound, the t distribution approaches the

standard Normal. This is sometimes written as tν
D→N(0, 1) as ν →∞.

The t− may be difficult to distinguish visually from the Normal. However, as
we have seen elsewhere, the proportion of its probability mass line beyond a certain
distance from the origin differs from the same proportion in the standard Normal to
an ever greater degree as one moves farther from the origin: that is, the distribution
appears to be a very good approximation in the central region, but (for any given

degrees of freedom parameter) the farther out in the tails we go, the poorer is the
approximation that the standard Normal provides to the t.

The t− is also sometimes used to model data were extreme events arise more
frequently than could be accounted for in the standard Normal; for example, low-
degrees-of-freedom t− distributions are sometimes used in financial econometrics to
describe data series that have a higher relative frequency of extreme events than
would arise in a Normal distribution.

Its density is:

fX(x) = (νπ)−
1
2

Γ(ν+1
2 )

Γ(ν2 )

(
1 +

x2

ν

)(− ν+1
2 )

,

where Γ(k) is the Gamma function,

Γ(k) =

∫ ∞
0

e−ss(k−1)ds.

The Gamma function is continuous and is defined on any real value except 0 and the
negative integers, but for positive integer values of k it yields the factorial function:
that is Γ(k) = (k − 1)!.
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Figure 9.2.3
t− densities, varying degrees of freedom, compared with N(0,1)
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9.2.4 χ2 (‘Chi-squared’) densities

The χ2 distribution also arises in testing problems. Sums of independent squared

standard Normal random variables have χ2 distributions, with degrees of freedom
equal to the number of independent squared standard Normal random variables that
are added. Because standard Normal random variables can often be shown to arise
asymptotically through the application of a central limit theorem to a sum or aver-
age, it follows that taking an inner product of a vector of such variables with itself
(i.e. taking the sum of the squared underlying Normal random variables) will lead to

a χ2 distribution if the variables being added are independent. The very wide appli-
cability of central limit theorem stew imply asymptotic normality therefore implies a
correspondingly wide applicability of joint tests combining several of these variables,

yielding χ2 distributions.

Like the t−, the χ2 distribution is a function of one degrees-of-freedom param-
eter, ν : its density is

fX(x) =
x

(ν−2)
2 (e

−x
2 )

2
ν
2 Γ(ν2 )

where again Γ(k) is the Gamma function defined above.

The mean of a χ2 distribution is its degrees-of-freedom parameter ν, and the

variance is 2ν. Visually, then, χ2 distributions move to the right as we consider

higher degrees of freedom. The χ2 densities with one or two degrees of freedom
are monotonically declining; with three or more d.f., the densities have an interior
maximum.
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Figure 9.2.4
χ2 densities
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9.2.5 F densities

F distributions characterise ratios of independent χ2 distributions divided by
their degrees of freedom. Again, therefore, this distribution is one that arises in test-

ing problems. Because the χ2 distributions are divided by their degrees of freedom,
however, the means of numerator and denominator are set to one. Of course, this
does not imply that the mean of an F distribution is equal to one, because the ratio
is a nonlinear transformation, and the mean of the ratio is not in general equal to
the ratio of the means. However, the mean of an F distribution is close to one.

The F distribution has two degrees-of-freedom parameters, one corresponding

with the numerator and one with the denominator, in a ratio of χ2 distributions.
The density has the form:

fX(x) =

(
ν1

ν2

) ν1
2 Γ

(
(ν1+ν2)

2

)
Γ
(
ν1
2

)
Γ
(
ν2
2

) [1 +

(
ν1

ν2

)
x

]− (ν1+ν2)

2

x
ν1−2

2 .

Figure 9.2.5
F− densities
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9.2.6 Exponential densities

The exponential distribution is often used as a model for continuous, positive
quantities such as times: for example, completion times or waiting times. Its density
has the simple form

fX(x) = µ−1e
−x
µ ,

a function of the single parameter µ which is the mean of the distribution.

Figure 9.2.6
Exponential densities
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9.2.7 Lognormal densities

If a random variable has a Lognormal distribution with parameters µ and σ,
then the logarithm of that random variable has a Normal distribution with the same
parameters. It is useful to know the form of this distribution because we often are
in the position of taking the logarithm of random variables, some of which may be
approximately Normal, so that the Lognormal can provide a good approximation to
the distribution of the result. The Lognormal is also often used as a general model for
the distribution of skewed data, where the exact form of the distribution is unknown.

Its density has a form reminiscent of the Normal:

fX(x) = (2πσ2)−
1
2 (xσ)−1exp

[
− (log(x)− µ)2

2σ2

]
.

Figure 9.2.7
lognormal densities
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