Jean-Marie Dufour April 18, 2016

McGill University ECON 763 Financial econometrics Final exam

No documentation allowed Time allowed: 3 hours

20 points 1. Consider the following ARMA model:

$$X_t = 0.5 X_{t-1} + u_t - 0.25 u_{t-1} \tag{1}$$

where $\{u_t : t \in \mathbb{Z}\}$ is an *i.i.d.* N(0,1) sequence. Answer the following questions.

- (a) Is this model stationary? Why?
- (b) Is this model invertible? Why?
- (c) Compute:
 - i. $E(X_t);$
 - ii. $\gamma(k), k = 1, ..., 8;$
 - iii. $\rho(k), k = 1, 2, \dots, 8$.
- (d) Graph $\rho(k), k = 1, 2, ..., 8$.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .
- (f) Compute the first two partial autocorrelations of X_t .
- (g) If $X_{10} = 1$ and assuming the parameters of the model are known, can you compute the best linear forecasts of X_{10} , X_{11} , X_{12} and X_{13} based on X_{10} (only)? If so, compute these.
- (h) If $X_{10} = 1$, $u_{10} = 2$, $u_9 = 1$, $u_8 = 0.99$, $u_7 = 1.2$, and assuming the parameters of the model are known, can you compute the best linear forecasts of X_{11} , X_{12} and X_{13} based on the history of the process up to X_{10} ? If so, compute these.

20 points 2.	Let $X_1, X_2,$, X_T be a	time series
--------------	-----------------	--------------	-------------

- (a) Define:
 - i. the sample autocorrelations for this series;
 - ii. the partial autocorrelations for this series.
- (b) Discuss the asymptotic distributions of these two sets of autocorrelations in the following cases:
 - i. under the hypothesis that $X_1, X_2, ..., X_T$ are independent and identically distributed (i.i.d.);
 - ii. under the hypothesis that the process follows a moving average of finite order.
- (c) Describe how you would identify the process described in equation (1) in question 1.
- (d) Propose a method for testing the hypothesis that X_1, X_2, \ldots, X_T are independent and identically distributed (i.i.d.) without any assumption on the existence of moments for X_1, X_2, \ldots, X_T . In particular, discuss:
 - i. how bounds could be applied to test this type of hypothesis;
 - ii. how a simulation-based procedure could be used.
- 20 points 3. Let $X_1, X_2, ..., X_T$ be a time series where $X_1, X_2, ..., X_T$ have continuous distributions.
 - (a) Propose a method for testing the hypothesis that X_1, X_2, \ldots, X_T are independent and identically distributed (i.i.d.) without any assumption on the existence of the moments for X_1, X_2, \ldots, X_T .
 - (b) If $X_1, X_2, ..., X_T$ have common median m_0 , describe a procedure for testing whether these observations are independent without assuming identical distributions.
 - (c) Consider the "median regression" model:

$$y_t = x'_t \beta + u_t, \ t = 1, \dots, T,$$
 (2)

where x_t , t = 1, ..., T, are $k \times 1$ fixed vectors and the disturbances u_t , t = 1, ..., T, are independent with median zero and continuous distributions. Propose procedures for testing hypotheses of the form $H_0: \beta = \beta_0$ and build confidence sets for β .

2

- (d) Discuss how the procedure described could be adapted if the errors in (2) have discrete distributions.
- 20 points 4. Let R_{it} , i = 1, ..., n, be returns on *n* securities for period *t*, and \tilde{R}_{Mt} the return on a benchmark portfolio (t = 1, ..., T). The (unconditional) CAPM which assumes time-invariant *betas* can be assessed by testing:

$$\mathscr{H}_E: a_i = 0, \quad i = 1, \dots, n, \tag{3}$$

in the context of the MLR model

$$r_{it} = a_i + \beta_i \tilde{r}_{Mt} + \varepsilon_{it}, \quad t = 1, \dots, T, \ i = 1, \dots, n,$$
(4)

where $r_{it} = R_{it} - R_{ft}$, $\tilde{r}_{Mt} = \tilde{R}_{Mt} - R_{ft}$, R_{ft} is the riskless rate of return and ε_{it} is a random disturbance, such that

$$V_t \equiv (\varepsilon_{1t}, \dots, \varepsilon_{nt})' = JW_t , \ t = 1, \dots, \ T ,$$
(5)

where J is an unknown, non-singular matrix and the distribution of the vector w = vec(W), $W = [W_1, ..., W_T]'$ is either: (i) known (hence, free of nuisance parameters), or (ii) specified up to an unknown finite dimensional nuisance-parameter (denoted v).

- (a) Put the model (4) in matrix notation.
- (b) On assuming that the vectors W_1, \ldots, W_T are i.i.d. $N[0, I_n]$, describe the likelihood ratio test for \mathscr{H}_E , and discuss how this test could be implemented.
- (c) Propose a procedure for testing whether the errors W_1, \ldots, W_T are i.i.d. $N[0, I_n]$.
- (d) If another distribution is assumed for *w* (such as a heavy-tailed distribution), discuss how such a test could be implemented.
- 20 points 5. Consider a time series of asset returns R_t , t = 1, ..., T, which are i.i.d. according to stable distribution, with characteristic function

$$\ln \int_{-\infty}^{\infty} e^{ist} d\mathbf{P}(S < s) = \begin{cases} -\sigma^{\alpha} |t|^{\alpha} [1 - i\beta \operatorname{sign}(t) \tan \frac{\pi\alpha}{2}] + i\mu t, & \text{for } \alpha \neq 1, \\ -\sigma |t| [1 + i\beta \frac{\pi}{2} \operatorname{sign}(t) \ln |t|] + i\mu t, & \text{for } \alpha = 1. \end{cases}$$
(6)

- (a) Discuss the interpretation of the different parameters μ , σ , α and β .
- (b) Why are stable random variables called "stable"?
- (c) On assuming that $\beta = 0$, propose a method for testing

$$H_0(\alpha_0): \alpha = \alpha_0. \tag{7}$$

(d) On assuming that $\beta = 0$, discuss how a confidence set for α could be built.