Jean-Marie Dufour February 23, 2016

McGill University ECON 763 Financial econometrics Mid-term exam

No documentation allowed Time allowed: 1.5 hour

- 20 points 1. Let $\gamma(k)$ the autocovariance function of second-order stationary process on the integers. Prove that:
 - (a) $\gamma(0) = Var(X_t)$ et $\gamma(k) = \gamma(-k)$, $\forall k \in \mathbb{Z}$;

(b)
$$|\gamma(k)| \leq \gamma(0)$$
, $\forall k \in \mathbb{Z}$;

- (c) the function $\gamma(k)$ is positive semi-definite.
- 20 points 2. Consider a process that follows the following model:

$$X_t = \sum_{j=1}^m [A_j \cos(\mathbf{v}_j t) + B_j \sin(\mathbf{v}_j t)], t \in \mathbb{Z},$$

where $v_1, ..., v_m$ are distinct constants on the interval $[0, 2\pi)$ and $A_j, B_j, j = 1, ..., m$, are random variables in L_2 , such that

$$E(A_j) = E(B_j) = 0, E(A_j^2) = E(B_j^2) = \sigma_j^2, \ j = 1, \dots, n,$$

$$E(A_jA_k) = E(B_jB_k) = 0, \text{ for } j \neq k,$$

$$E(A_jB_k) = 0, \ \forall j, k.$$

- (a) Show that this process is second-order stationary.
- (b) For the case where m = 1, show that this process is deterministic
 [Hint: consider the regression of X_t on cos(v₁t) and sin(v₁t) based two observations.]

60 points 3. Consider the following models:

$$X_t = 10 + 0.7 X_{t-1} - 0.2 X_{t-2} + u_t \tag{1}$$

where $\{u_t : t \in \mathbb{Z}\}$ is an *i.i.d.* N(0, 1) sequence. For each one of these models, answer the following questions.

- (a) Is this model stationary? Why?
- (b) Is this model invertible? Why?
- (c) Compute:
 - i. $E(X_t);$
 - ii. $\gamma(k), k = 1, ..., 8;$
 - iii. $\rho(k), k = 1, 2, ..., 8$.
- (d) Graph $\rho(k)$, k = 1, 2, ..., 8.
- (e) Find the coefficients of u_t , u_{t-1} , u_{t-2} , u_{t-3} and u_{t-4} in the moving average representation of X_t .
- (f) Find the autocovariance generating function of X_t .
- (g) Compute the first two partial autocorrelations of X_t .
- (h) If $X_{10} = 11$, compute the best linear forecast of X_{11} based on X_{10} (only). Justify your answer.
- (i) If $X_8 = 12$, $X_9 = 9$ and $X_{10} = 11$, compute the best linear forecast of X_{11} and X_{12} based on the past X_t up to time 10. Justify your answer.