Water Conservation: Home, Yard, Farm & Ranch

Alternative Water Sources for Landscape Irrigation

Bernd Leinauer Professor and Turfgrass Extension Specialist

Turfgrass Irrigation

Las Cruces		GCSAA Survey (Gelernter et al., 2015)
Cool-season	50"	46 4"
Warm-season	38"	40.4

Grass Type	1500 ft ²	700 ft ²
WS	35,500 gal	16,560 gal
CS	46,700 gal	21,790 gal

Turfgrass Irrigation Requirement Las Cruces, NM

NM STATE

Canopy die-back (cavitation) of a mature ash tree associated with turfgrass removal and inadequate irrigation (Courtesy of Devitt and Morris [UNLV], 2008)

Turf removal

- \$3/ft² Install a new landscape:
 no live turf or turf looking plants
 includes plants (no turf)
- synthetic turf may be eligible http://socalwatersmart.com

Water Conservation

- East Bay Municipal Utility District in NorCal: surveyed 86 sites with water efficient landscapes – water use nearly double of budget!
- Cash for grass conservation programs removed 170 million sq ft of turf and resulted in just over 7% savings

(Michael Hollis, Metropolitan Water District of Southern California)

Strategies to Reduce (Potable) Irrigation Water Consumption

- 1. Artificial Turf
- 2. Reduce area under irrigation
- 3. Irrigation with recycled/impaired water
- Use of adapted / native (low water use)
 <u>turfgrass</u> species

- 5. Accept quality reduction
- 6. Increase irrigation efficiency
 - I. Scheduling
 - a) Climate data
 - b) Soil water status
 - II. Improve Water Distribution

Alternate Water Sources and How They Impact The Landscape

http://www.nrcs.usda.gov/news/archive/2004newsroom.html

ALTERNATIVE IRRIGATION WATER SOURCES

- 1. Recycled (Effluent) Water
 - discharge from treatment plants
 - grey water
- 2. Saline Groundwater
- 3. Surface Water
 - Stormwater
 - Brackish water
 - Sea water
- 4. Reversed Osmosis Concentrate (Brine)
- 5. Coalbed Methane Produced Water

Water Quality

Factors:

- biological
- physical
- chemical

Water Quality

Contaminants of Emerging Concern (CECs):

- Pharmaceuticals and Personal Care Products – PPCPs
- Endocrine Disruptors Hormones

Irrigation with Recycled Water

Grey Water System

How gray water systems work

https://images.app.goo.gl/6NX5rnyj8wPuMsLT6

Todd Trumbull / The Chronicle

Water Quality

Biological parameters

- Pathogens / disease causing organisms
- Algae
- Cyanobacteria
- Iron, Manganese, Sulfurbacteria
- Nematodes

Biological Factors

- Bacteria
- Algae
 - Dissolved Oxygen
 - Nutrient content (nitrate, phosphate,
 - ...), eutrophication
 - Clogging of irrigation equipment
 - Algae on turf
 - No published threshold
- Cyanobacteria
- Iron, Manganese, Sulfurbacteria
- Nematodes

Biological Factors

Physical Factors

- Solids in Suspension
- Turbidity
- Color
- Odor
- Temperature

http://water.usgs.gov/edu/gallery/sediment-lake-tuscaloosa.html

Water Quality Comparisons Chemical Parameters

	Ground Water			Grey Water Recycled Water		CBM OC Sea Water		
	El Paso	Las Cruces	Carls- bad	CA	Las Cruces	Water	(47 Wells)	able
рН	7.8	7.3	7.7	7.0	7.5		7.6	7.5
EC	2.6	4.0	6.4	2.0	2.3	50	3.0	0.6
TDS	1,644	2,560	3,925	1,266	1,500	34,500	2,010	390
SAR	11.5	10.5	6.4	4.8	7.6	39.8	29	1.4

Data from Assadian, 2006; Asano et al., 1985; Duncan et al., 2009, and Rice et al., 2000

Types of salts

- Cations:
 - -Na⁺, Ca ⁺⁺, Mg ⁺⁺, K ⁺, NH₄ ⁺
- Anions:
 - -CI⁻, NO₃⁻, SO₄⁻⁻, BO₃³⁻, CO₃⁻⁻, HCO₃⁻

Salinity / TDS

Terminology:

- Electrical conductivity (EC) [dS/m]
 - dS/m [deciSiemens m⁻¹] =
 - mmhos/cm [millimhos cm⁻¹] =
 - µmhos [micromhos cm⁻¹] x 1000
- Total dissolved solids/salts (TDS) [ppm]
 - ppm [parts per million] =
 - mg/l [milligrams l⁻¹]
 - 1% = 10,000 ppm
- EC [dS/m] x 640 = TDS [ppm]

Interpreting Water Reports

Ţ

Salt Hazard		ECw (dS/m)	TDS (ppm)	
Low	No detrimental effect on	<0.75	<500	
	plants or soil build up			
Med.	Stress for sensitive plants	0.75-1.5	500-1000	
	Moderate leaching prevents accumulation			
High	Requires salt tolerant plants	1.5-3.00	1000-2000	
	Careful irrigation, good drainag	je		
VH	Generally unacceptable Intensive management, excelle	>3.00	>2000	
	drainage and frequent leaching	9		

Ţ

Interpreting Water Reports

Na Hazard	SARw	Comments
Low	<10	Can be used for any soil without structure deterioration
Med.	10-18	Ok on coarse textured soils Structure problems on fine textured soils with high CEC
High	18-26	Na accumulation will require intensive management; amendments, leaching
VH	>26	Generally not suitable for irrigation except at very low soil Na levels with intensive management

Interpreting Soil Reports

Ţ

Salt Hazard	ECe	TDS
	dS/m	ppm
Low	<1.5	<1000
Med.	1.6-3.9	1000-2500
High	4.0-5.0	2500-3200
VH	>5.0	>3200

Interpreting Soil Reports

F

Degree of Permeability Problem

Soil Parameter	None	Increasing	Severe
ESP	<3.0	3.0-15	>15
SAR	<2.1	2.1-12	>12

Soil type	ph	EC (mmhos/cm)	SAR	Problem
Silty Loam	7.7	17.3	13.6	Very likely

Water Quality

- TDS (salt content)
- Na content
- Mn, B toxicity

- Chamizal National Memorial
- 350 acre irrigated turf area, El Paso, TX
- 46 years irrigated with saline groundwater
- EC = 1.1 dS m⁻¹; SAR = 5.2

Relationship between irrigation system uniformity and soil salinity

Monitoring

• Frequent soil and water tests

Alternate Water Sources and How They Impact the Landscape

In a desert environment, alternate water sources generally have a higher salinity and sodicity than traditional sources:

- 1. Select salt tolerant plants
- 2. Correcting salinity problems
 - a) Reduce salt inputs
 - b) Remediate saline/sodic soils:
 Control calcium and sodium to avoid structural problems
 - c) Salt tolerant grasses
 - d) Avoid soil amendments that increase moisture retention

Estimated Relative Salinity Tolerances 1 (Marcum, 1999)

Species	Grass type	EC _e (dS/m) for 50% growth reduction
Disticlis sp. var. stricta	W/arm	>35
Sporobolos virginicus	vvaim	200
Paspalum vaginatum		
Zoysia matrella, tenuifolia	vvarm	25
<i>Puccinella</i> spp.	Cool	
Stenotaphrum secundat.	Warm	18
Cynodon spp.	Warm	15
Zoysia japonica	Warm	12
Agrostis stolonifera	Cool	9
Festuca arundinacea	Cool	7

Estimated Relative Salir	nity Tolerance	s 2 (Marcum, 1999)
Common name	Grass type	EC _e (dS/m) for 50% growth reduction
Lolium perenne	Cool	
Buchloe dactyloides	Warm	5
Bouteloua spp.	Warm	
Poa pratensis	Cool	
Poa trivialis	Cool	
Festuca longifolia /elatior /ovina	Cool	3
Lolium multiflorum	Cool	
Axonopus spp.	Warm	
Eremochloa ophiuroides	Warm	
Agrostis tenuis/canina	Cool	0
Paspalum notatum	Warm	Z
		A 🔤

Alkaligrass

Tall fescue

Fine fescue

0 – 10 cm: SAR 17.4 EC 3.8 dS/m

Alternate Water Sources and How They Impact the Landscape

In a desert environment, alternate water sources generally have a higher salinity and sodicity than traditional sources:

- 1. Select salt tolerant plants
- 2. Correcting salinity problems
 - a) Reduce salt inputs
 - b) Remediate saline/sodic soils:
 Control calcium and sodium to avoid structural problems
 - c) Salt tolerant grasses
 - d) Avoid soil amendments that increase moisture retention

