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	 Corroboration of Geostationary Operational Environmental Satellite-17 (GOES-17) wildland fire detection 
capabilities occurred during the 24 October 2019 (evening of 23 October LST) ignition of the Kincade Fire in 
northern California. Post-analysis of remote sensing data compared to observations by the ALERTWildfire 
fire surveillance video system suggests that the emerging Kincade Fire hotspot was visually evident in GOES-
17 shortwave infrared imagery 52 s after the initial near-infrared heat source detected by the ground-based 
camera network. GOES-17 Advanced Baseline Imager Fire Detection Characteristic algorithms registered the 
fire 5 min after ignition. These observations represent the first documented comparative dataset between fire 
initiation and satellite detection, and thus provide context for GOES-16/17 wildland fire detections.

ABSTRACT

(Manuscript received 24 March 2020; review completed 27 July 2020)

1.	 Introduction

	 The Advanced Baseline Imager’s (ABI) improved 
radiometric, spectral, spatial, and temporal resolution 
on board the Geostationary Operational Environmental 
Satellite (GOES)-R series of weather satellites (GOES-
16 , GOES-17 , and upcoming GOES-T and GOES-U) 
are recognized as revolutionary tools for the provision 
of impact-based decision support services (IDSS) in 
wildland fire incidents (Lindley et al. 2016, 2019). 

The unprecedented temporal and improved spatial 
resolution has provided early detection and first 
alerting of potentially significant wildfire occurrences 
for firefighting officials (Uccellini and Ten Hoeve 
2019), but the utility of satellite-based fire detection 
and monitoring in support of the wildland fire 
community is not a consistent practice of the National 
Weather Service (NWS) or other federal fire agencies. 
Preliminary efforts to leverage this technology in the 
operational environment, however, are credited with 
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saving lives and property (NOAA 2018). Although 
numerous anecdotal accounts of successful fire-
weather IDSS have been provided by NWS and fire/
emergency management personnel utilizing GOES-
16/17, verifiable data on fire detections relative to the 
observed ignition of fire on the ground has not been 
previously documented. While only one example, 
this analysis provides important novel ground truth 
verification that demonstrates effectiveness and utility 
of the GOES-16/17 ABI in both human-interpreted and 
algorithm-based wildland fire detection.

2.	 Data and analysis

	 Due to the shortwave infrared (SWIR) channel’s 
sensitivity to subpixel heat, previous research has 
shown that the most useful channel for early detection 
of wildland fires on the GOES-R series ABI is channel 
7, centered near 3.9 μm (e.g., Dozier 1981, Weaver et 
al. 1995, Weaver et al. 2004). One of the significant 
improvements of the GOES-R series ABI is the increase 
in radiometric resolution. Specifically, the bits per pixel 
of the 3.9-μm channel has increased from 10 to 14 
when compared to the legacy GOES imager (Schmit 
et al. 2017). Additionally, the maximum saturation 
temperature for the 3.9-μm channel increased from 337 
K to greater than 400 K, which in turn allows the GOES-
16/17 to sense more heat and permits stakeholders to 
monitor wildland fires in more detail. The increase in 
spectral capabilities on the ABI, that includes the 2.2-
μm and 1.6-μm near-IR channels, is also important for 
monitoring wildland fires. As the sub-pixel temperature 
anomaly increases, the peak of the Planck Function 
shifts toward these shorter wavelengths (Weaver et al. 
2004 and Schmidt 2020). Therefore, the 2.2-μm and 
1.6-μm channels help supplement information from 
the 3.9-μm channel. These additional near-IR channels 
assist in identifying and determining the intensity 
of wildland fires and are combined with the 3.9-μm 
channel to create false color red-green-blue composite 
images (Elmer et al. 2016 and Fuell et al. 2016), which 
are frequently used as decision aids in operations (e.g., 
Elsenheimer and Gravelle 2019; CIRA 2020). The 
increase in spatial resolution of the 3.9-μm channel, 
from 4 km to 2 km, also positively impacts wildland fire 
detection. A given fire now occupies a 4x larger fraction 
of the pixel footprint, leading to higher visual contrast 
and notable increase in brightness temperatures. NWS 
forecasters have used GOES-16/17 to detect point heat 
sources such as oil rig burnoffs, burning structures with 

subtle heat signatures as low as 1 K above background 
brightness temperature, and wildland fire on the order 
of acres (Schmidt 2020). These examples illustrate 
how minute-by-minute monitoring of GOES-16/17’s 
high radiometric, spectral, and spatial resolution 
imagery, with 5x improved temporal resolution over 
legacy GOES, when interpreted by skilled practitioners 
in context of the ambient environment, allows for 
the identification of subtle fire signatures, and thus 
revolutionizes remotely sensed wildland fire detection 
capabilities.
	 The Fire Detection and Characterization (FDC) 
algorithm is the National Oceanic and Atmospheric 
Administration’s (NOAA) operational fire algorithm. 
FDC data is produced by NOAA for the 5-min 
CONtiguous United States (CONUS) and 10-min FD 
(Full Disk) scans. The algorithm provides a metadata 
mask that identifies pixels which are considered 
to be fire signatures and assigns a fire likelihood 
category. For most suspected fire signals, the algorithm 
provides Fire Radiative Power (FRP) and for a subset 
of higher confidence fire detections, estimated Fire 
Temperature (FT) and Fire Area (FA) are provided. FT 
and FA are calculated using simultaneous equations 
and are dependent on one another. They represent a 
hypothetical heat source that would match the observed 
temperatures. Due to radiometric error, diffraction, and 
remapping of ABI data, the solutions are imprecise and 
primarily intended to be used in numerical models for 
aerosols and smoke. Therefore, FT and FA should not 
be taken as literal values representing the temperature 
and areal extent of wildland fire. The FRP, FT, and 
FA products are available in the NWS’s Advanced 
Weather Interactive Processing System (AWIPS), but 
the metadata mask is not. Operational availability of 
FDC data in AWIPS is ~3 min latency compared to ~25 
s latency for raw base ABI data such as 1-min MDS 
(Mesoscale Domain Sector) SWIR.
	 The Kincade Fire burned 315 km2 (77,758 ac), 
destroyed 374 structures, and injured four people in 
Sonoma County, California, between 24 October and 
6 November 2019 (Cal Fire, cited 2019). At the time 
of ignition, GOES-17’s SWIR 3.9-μm channel data was 
available in AWIPS from FD scans every 10 min, from 
CONUS scans every 5 min, and from MDS scans every 
1 min. ALERTWildfire, a near-infrared video system 
specifically designed for monitoring wildland fires, 
provided novel ground-based corroboration of GOES-
17 fire detection capabilities during the ignition and 
initial spread of the Kincade Fire in northern California 
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on 24 October 2019 (evening of 23 October LST). 
The Barham North ALERTWildfire near-IR camera 
(38.51N; 122.66W) fortuitously observed the fire’s 
ignition during downslope windstorm conditions from 
a line-of-site vantage point 32 km south-southeast of 
its origin (38.78N 122.78W, approximated by GOES-
17). Summary comparisons of the ALERTWildfire 
and operationally available GOES-17 depictions of the 
Kincade Fire ignition timeline are shown in graphical 
and table form (Fig. 1 and Table 1).
	 ALERTWildfire recorded the extinction of an 
artificial light source, likely resulting from an electrical 
disruption, in visual proximity to the eventual Kincade 
Fire ignition at 04:19:54 UTC (hh:mm:ss, format applies 
to all time references hereafter). This was followed by 
the initial emergence of a near-IR heat signature that 
can be seen in the ALERTWildfire imagery at 04:20:09 
UTC with subsequent intensification thereafter. GOES-
17 SWIR data at 04:19:57 UTC showed no evidence 
of a wildland fire as an ambient SWIR brightness 
temperature of 17.4° C was present. However, the 
next available images at 04:21:01 UTC, approximately 
52 s after the first near-IR glow was captured by the 
ALERTWildfire camera, and 04:21:57 UTC visually 
indicated brightening pixels with SWIR brightness 
temperatures of 19.8° C and 20.0° C respectively. 
By 04:22:57 and 04:23:57 UTC SWIR brightness 
temperatures increased to 25.5° C and 24.9° C 
respectively, and subsequent brightening to 59.8° C was 
observed by the end of the analysis at 04:36:57 UTC.
	 The operational FDC algorithm first detected the 
Kincade Fire at 04:26:57 UTC, 5 min after its initial 
visual identification in GOES-17 MDS SWIR data, 
with the FRP product sampling 78.5 MW. Ten minutes 
later, at 04:36:57 UTC, the operational FDC FT and FA 
products first detected the fire and were measured at 
2975.2 K and 269 m2 respectively. At that time, the FRP 
product increased by a factor of more than three at 275.6 
MW. As previously stated, the FT and FA products are 
only produced for high confidence fires while the FRP 
product is produced for low confidence fire detections. 
In this case, a preliminary representative interpretation 
of the FDC algorithm depiction of the Kincade Fire, 
considering the limitations of FT and FA data, would be 
“small and hot”. It is noteworthy that SWIR brightness 
temperatures increased to greater than 100° C less 
than 1 h after the presented analysis. Similar GOES-16 
SWIR brightness temperatures have been observed in 
association with extreme fire behavior (Lindley et al. 
2019).

3.	 Discussion

	 Comparative analysis of satellite and terrestrial 
intelligence shows that GOES-17 ABI detected 
evidence of the Kincade Fire ignition within 52 s of 
the first ground-based near-IR glow observed by the 
ALERTWildfire surveillance network. Initial satellite 
detection of the ignition was identified per human/
visual recognition of a SWIR hotspot. The operational 
FDC algorithm began to provide data on the fire 5 min 
later. This is an important finding as corroboration 
of the GOES-16/17 ABI fire detection capability is 
essential to establishing context for its utility as an 
early detection resource. Sensitivity of the GOES-
16/17 ABI fire detection capability varies with fire 
environment and resultant burn intensity. Hotspot 
signatures appear subtle, or may not be evident at all, in 
marginal or less critical fire environments, while hotter 
burn temperatures quickly saturate ABI pixels in high 

Figure 1. Graphical timeline comparison of 
ALERTWildfire and operational GOES-17 detections 
of the 24 October 2019 Kincade Fire ignition. Click 
image for an external version; this applies to all figures 
and hereafter.

http://nwafiles.nwas.org/jom/articles/2020/2020-JOM8-figs/Fig1.png
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end and more critical fire environments (Pletsch et al. 
2019).
	 While the operational FDC data, which is 
only generated with 5-min CONUS-scale imagery, 
responded to the fire, the algorithm’s detection lagged 
fire identification by manual interpretation of raw 
1-min resolution ABI imagery. Due to this time lag 
between the identification of wildland fire in raw 3.9-
μm ABI imagery and detection by the operational FDC 

algorithm, the authors believe that there are significant 
limitations of the current FDC algorithm for use in 
the operational environment. In order to demonstrate 
potential future algorithm improvements, the FDC 
products processed using GOES-17 1-min MDS data at 
the University of Wisconsin-Madison’s Space Science 
and Engineering Center (SSEC) were examined 
alongside the ALERTWildfire video (Fig. 2). In these 
data (not available in real-time operations), the FDC 

Table 1. Characteristics of fire detection via critical timestamps of ALERTWildfire (Barham North site) video 
and operationally available GOES-17 data for the Kincade Fire between 04:18:34 and 04:36:57 UTC 24 October 
2019. Visual near-IR glow and visual hotspot indicate human identified signatures. FDC Fire Radiative Power 
(FRP), Fire Temperature (FT), and Fire Area (FA) reported from the 5-min CONUS sector scan data.  Data update 
indicates data source which updated at the indicated time step, AW=ALERTWildfire, CH7=GOES-17 3.9 µm SWIR, 
FDC=GOES-17 ABI Fire Detection Characteristics algorithm. 

ALERTWildfire (Barham North) vs. GOES-17  –  Kincade Fire 24 October 2019

Time 
(hh:mm:ss

UTC)

ALERT
Wildfire

Operationally Available GOES-17 Data

Visual 
near-IR 

glow

Visual 
hotspot

SWIR 
brightness 

T (°C)
FRP (MW) FT (K) FA (m2) Data Update

04:18:34 N N 17.4 -- -- -- AW
04:19:54 N N 17.4 -- -- -- AW
04:19:57 N N 17.4 -- -- -- CH7
04:20:09 Y N 17.4 -- -- -- AW
04:21:01 Y Y 19.8 -- -- -- CH7
04:21:19 Y Y 19.8 -- -- -- FDC
04:21:57 Y Y 20.0 -- -- -- CH7
04:22:57 Y Y 25.5 -- -- -- CH7
04:23:57 Y Y 24.9 -- -- -- CH7
04:24:57 Y Y 30.5 -- -- -- CH7
04:25:57 Y Y 28.6 -- -- -- CH7
04:26:19 Y Y 28.6 78.5 -- -- FDC
04:26:57 Y Y 35.8 78.5 -- -- CH7
04:27:57 Y Y 42.9 78.5 -- -- CH7
04:28:57 Y Y 42.9 78.5 -- -- CH7
04:29:57 Y Y 40.3 78.5 -- -- CH7
04:31:01 Y Y 46.3 78.5 -- -- CH7
04:31:19 Y Y 46.3 221.5 -- -- FDC
0431:57 Y Y 54.4 221.5 -- -- CH7
04:32:57 Y Y 59.3 221.5 -- -- CH7
04:33:57 Y Y 51.7 221.5 -- -- CH7
04:34:57 Y Y 52.6 221.5 -- -- CH7
04:35:57 Y Y 54.2 221.5 -- -- CH7
04:36:19 Y Y 54.2 275.6 2975.2 269 FDC
04:36:57 Y Y 59.8 275.6 2975.2 269 CH7
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algorithm detected the Kincade Fire 2 min earlier than 
the operational FDC, at 04:24:57 UTC. Prior to the time 
of both operational and SSEC-processed algorithm-
based detections, the Kincade Fire was already visually 
discernible when examining the radiance difference, 
in 3.9-μm radiance space, between raw GOES-17 
3.9-μm and 11.2-μm imagery. Thus, this case review 
suggests that manual monitoring of raw GOES-16/17 
ABI data in conjunction with image differences 
provides opportunities for earlier notification of 
wildland fire ignition when compared to those provided 
by current automation processes. While the current 
automated FDC algorithm is generally a slower and 
less comprehensive means of identifying wildland fire 
versus visual inspection of raw ABI data, this analysis 
shows that improvements are within reach, and that 
automated detection can provide alerts to stakeholders 
in cases where manual monitoring is less intensive.
	 The Kincade Fire ignited within a critical fire 
weather environment (1700 UTC 23 October 2019 
SPC Day 1 Fire Weather Outlook available here), and 
is thus representative of the GOES-16/17 ABI’s fire 

detection capabilities under conditions favorable for 
extreme fire behavior and dangerous wildfires. Rapid 
detection of newly ignited wildland fire is critical in 
such environments because the least costly wildfires 
are commonly the ones that receive strong initial attack 
and are suppressed while still small (Pyne 2015). 
Both observing platforms utilized in this case study 
represent examples of existing in-situ and space-based 
technological solutions for early wildfire detection, 
with the possibility shown of spaceborne instruments 
detecting wildfires within a minute of ignition. If 
data from such instruments are fully assimilated 
and implemented into fire/emergency management 
operations, they could immediately support timely 
ignition detection, fire tracking, and the provision of 
warnings for public and responder safety (Berlin and 
Hieb 2019).
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