OFFSET
1,8
COMMENTS
Equals A004233(n) - 1 for n > 1.
Does not satisfy Benford's law [Whyman et al., 2016] - N. J. A. Sloane, Feb 12 2017
LINKS
T. D. Noe, Table of n, a(n) for n=1..10000
G. Whyman, N. Ohtori, E. Shulzinger, and Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461, 595-601 (2016).
FORMULA
Conjecture: a(n) = floor(3*n^2*(n^(1/(3*n^2))-1)), checked for n <= 10^6. - Joseph M. Shunia, Aug 02 2024
MAPLE
Digits := 100; f := n->floor(evalf(log(n))); [ seq(f(n), n=1..100) ];
MATHEMATICA
Floor@ Log@ Range@ 105 (* Michael De Vlieger, Aug 21 2017 *)
PROG
(PARI) a(n)=floor(log(n))
(Haskell)
a000195 = floor . log . fromIntegral -- Reinhard Zumkeller, Mar 17 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved