login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Strobogrammatic numbers: the same upside down.
(Formerly M4480 N1897)
24

%I M4480 N1897 #44 Jan 13 2023 11:04:03

%S 0,1,8,11,69,88,96,101,111,181,609,619,689,808,818,888,906,916,986,

%T 1001,1111,1691,1881,1961,6009,6119,6699,6889,6969,8008,8118,8698,

%U 8888,8968,9006,9116,9696,9886,9966,10001,10101,10801,11011,11111,11811,16091,16191

%N Strobogrammatic numbers: the same upside down.

%C Strobogrammatic numbers are a kind of ambigrams that retain the same meaning when viewed upside down. - _Daniel Mondot_, Sep 27 2016

%C "Upside down" here means rotated by 180 degrees (i.e., central symmetry), NOT "vertically flipped" (symmetry w.r.t. horizontal line, which are in A045574). - _M. F. Hasler_, May 04 2012

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Michael S. Branicky, <a href="/A000787/b000787.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe)

%H J. M. Howell, <a href="http://www.jstor.org/stable/2688504">Strobogrammatic years</a>, Math. Mag., 34 (1961), p. 182 and 184.

%H N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 5.

%t fQ[n_] := Block[{s = {0, 1, 6, 8, 9}, id = IntegerDigits[n]}, If[ Union[ Join[s, id]] == s && (id /. {6 -> 9, 9 -> 6}) == Reverse[id], True, False]]; Select[ Range[0, 16190], fQ[ # ] &] (* _Robert G. Wilson v_, Oct 11 2005 *)

%o (Python)

%o from itertools import count, islice, product

%o def ud(s): return s[::-1].translate({ord('6'):ord('9'), ord('9'):ord('6')})

%o def agen():

%o yield from [0, 1, 8]

%o for d in count(2):

%o for start in "1689":

%o for rest in product("01689", repeat=d//2-1):

%o left = start + "".join(rest)

%o right = ud(left)

%o for mid in [[""], ["0", "1", "8"]][d%2]:

%o yield int(left + mid + right)

%o print(list(islice(agen(), 47))) # _Michael S. Branicky_, Mar 29 2022

%Y Cf. A007597 (Primes in this sequence), A057770, A111065, A169731 (another version).

%Y Subsequence of A045574. - _M. F. Hasler_, May 04 2012

%K base,nonn,easy

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _Robert G. Wilson v_, Oct 11 2005

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy