login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 8*a(n-1) - a(n-2); a(0) = 1, a(1) = 4.
(Formerly M3637 N1479)
22

%I M3637 N1479 #103 Dec 12 2023 07:47:00

%S 1,4,31,244,1921,15124,119071,937444,7380481,58106404,457470751,

%T 3601659604,28355806081,223244789044,1757602506271,13837575261124,

%U 108942999582721,857706421400644,6752708371622431,53163960551578804

%N a(n) = 8*a(n-1) - a(n-2); a(0) = 1, a(1) = 4.

%C a(15+30k)-1 and a(15+30k)+1 are consecutive odd powerful numbers. The first pair is 13837575261124 +- 1. See A076445. - _T. D. Noe_, May 04 2006

%C This sequence gives the values of x in solutions of the Diophantine equation x^2 - 15*y^2 = 1. The corresponding y values are in A001090. - _Vincenzo Librandi_, Nov 12 2010 [edited by _Jon E. Schoenfield_, May 04 2014]

%C The square root of 15*(n^2-1) at those numbers = 5 * A136325. - _Richard R. Forberg_, Nov 22 2013

%C For the above Diophantine equation x^2-15*y^2=1, x + y = A105426. - _Richard R. Forberg_, Nov 22 2013

%C a(n) solves for x in the Diophantine equation floor(3*x^2/5)= y^2. The corresponding y solutions are provided by A136325(n). x + y = A070997(n). - _Richard R. Forberg_, Nov 22 2013

%C Except for the first term, values of x (or y) in the solutions to x^2 - 8xy + y^2 + 15 = 0. - _Colin Barker_, Feb 05 2014

%D Bastida, Julio R. Quadratic properties of a linearly recurrent sequence. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 163--166, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561042 (81e:10009) - From _N. J. A. Sloane_, May 30 2012

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001091/b001091.txt">Table of n, a(n) for n=0..200</a>

%H H. Brocard, <a href="http://resolver.sub.uni-goettingen.de/purl?PPN598948236_0004/DMDLOG_0053">Notes élémentaires sur le problème de Peel [sic]</a>, Nouvelle Correspondance Mathématique, 4 (1878), 337-343.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-1).

%F G.f.: A(x) = (1-4*x)/(1-8*x+x^2). - _Simon Plouffe_ in his 1992 dissertation

%F For all elements x of the sequence, 15*(x^2 -1) is a square. Limit_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(15). - _Gregory V. Richardson_, Oct 11 2002

%F a(n) = sqrt(15*((A001090(n))^2)+1).

%F a(n) = ((4+sqrt(15))^n + (4-sqrt(15))^n)/2.

%F a(n) = 4*S(n-1, 8) - S(n-2, 8) = (S(n, 8) - S(n-2, 8))/2, n>=1; S(n, x) := U(n, x/2) with Chebyshev's polynomials of the 2nd kind, A049310, with S(-1, x) := 0 and S(-2, x) := -1.

%F a(n) = T(n, 4) with Chebyshev's polynomials of the first kind; see A053120.

%F a(n)=a(-n). - _Ralf Stephan_, Jun 06 2005

%F a(n)*a(n+3) - a(n+1)*a(n+2) = 120. - _Ralf Stephan_, Jun 06 2005

%F From _Peter Bala_, Feb 19 2022: (Start)

%F a(n) = Sum_{k = 0..floor(n/2)} 4^(n-2*k)*15^k*binomial(n,2*k).

%F a(n) = [x^n] (4*x + sqrt(1 + 15*x^2))^n.

%F The g.f. A(x) satisfies A(2*x) = 1 + x*B'(x)/B(x), where B(x) = 1/sqrt(1 - 16*x + 4*x^2) is the g.f. of A098269.

%F The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p >= 3 and positive integers n and k. (End)

%F From _Peter Bala_, Aug 17 2022: (Start)

%F Sum_{n >= 1} 1/(a(n) - (5/2)/a(n)) = 1/3.

%F Sum_{n >= 1} (-1)^(n+1)/(a(n) + (3/2)/a(n)) = 1/5.

%F Sum_{n >= 1} 1/(a(n)^2 - 5/2) = 1/3 - 1/sqrt(15). (End)

%F a(n) = A001090(n+1)-4*A001090(n). - _R. J. Mathar_, Dec 12 2023

%t LinearRecurrence[{8,-1},{1,4},20] (* _Harvey P. Dale_, May 01 2014 *)

%o (PARI) a(n)=subst(poltchebi(n),x,4)

%o (PARI) a(n)=n=abs(n); polcoeff((1-4*x)/(1-8*x+x^2)+x*O(x^n),n) /* _Michael Somos_, Jun 07 2005 */

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1-4*x)/(1-8*x+x^2) )); // _G. C. Greubel_, Aug 26 2019

%o (Sage)

%o def A001091_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1-4*x)/(1-8*x+x^2) ).list()

%o A001091_list(20) # _G. C. Greubel_, Aug 26 2019

%o (GAP) a:=[1,4];; for n in [3..20] do a[n]:=8*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Aug 26 2019

%Y Cf. A001090, A090965, A098269, A322836 (column 4).

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E More terms from Larry Reeves (larryr(AT)acm.org), Aug 25 2000

%E Chebyshev comments from _Wolfdieter Lang_, Oct 31 2002

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy