login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A001094
a(n) = n + n*(n-1)*(n-2)*(n-3).
3
0, 1, 2, 3, 28, 125, 366, 847, 1688, 3033, 5050, 7931, 11892, 17173, 24038, 32775, 43696, 57137, 73458, 93043, 116300, 143661, 175582, 212543, 255048, 303625, 358826, 421227, 491428, 570053, 657750, 755191, 863072, 982113, 1113058
OFFSET
0,3
FORMULA
G.f.: x*(1 -3*x +3*x^2 +23*x^3)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=1, a(2)=2, a(3)=3, a(4)=28. - Harvey P. Dale, Feb 02 2012
From G. C. Greubel, Aug 26 2019: (Start)
a(n) = n + 4!*binomial(n,4).
E.g.f.: x*(1+x^3)*exp(x). (End)
MAPLE
seq(n + 4!*binomial(n, 4), n=0..35); # G. C. Greubel, Aug 26 2019
MATHEMATICA
Table[n+n(n-1)(n-2)(n-3), {n, 0, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 1, 2, 3, 28}, 40] (* Harvey P. Dale, Feb 02 2012 *)
PROG
(Magma) [n + n*(n-1)*(n-2)*(n-3): n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
(PARI) vector(35, n, (n-1) + 4!*binomial(n-1, 4)) \\ G. C. Greubel, Aug 26 2019
(Sage) [n + 24*binomial(n, 4) for n in (0..35)] # G. C. Greubel, Aug 26 2019
(GAP) List([0..35], n-> n + 24*Binomial(n, 4)); # G. C. Greubel, Aug 26 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Ray Wills (rwills(AT)vmprofs.estec.esa.nl)
EXTENSIONS
More terms from James A. Sellers, Sep 19 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy