e Y S o e atigie bl

B

/
Y ON THE MULTIPLE SOLUTIONS
OF THE PELL EQUATION.**

By D. H/LEBMEB.
x_,._—u"’"’_—-—

1. Introduction: Most of the literature written on the Pell equation is
concerned with the discovery and application of its fundamental solution.
Less attention has been paid to the multiple solutions; in fact, no systematic
discussion has been made of their many properties. The more fundamental
of these have been established by means of the hyperbolic functions.t 1t
is the purpose of this note to indicate a method by which a complete
study of the multiple solutions of the Pell equation can be deduced from
Lucas’ theory of recurring series of the second order. A number of
formulas and theorems of particular interest will be found in section 5 and 6.
These are readily derived from the principle proved in section 4. The
notation used is that of Lucas’ classical memoir,f and numbers in square
brackets [] refer to the equations of this article.

2. The general recurring series of the second order. Let a and b
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(1) 2—Px+(Q = 0

where P and Q are any integers prime to each other. We have then
a+b=P, ab= Q.

Let '
2) (a—D)® = A = 0 = P*P—4Q
s0 that
Y 2 R s
(3) a = "T, b = 9 .

Lucas considers two symmetric functions of ¢ and b namely:

an — bn
a—2Dn

U)L —] L -Vn == (L“‘*"I“'

and shows that they are recurring series of the second order with (1) for
scales of relation. That is, they differ only in the choice of initial values:

[]0 - O, Ul == 1, Tvo === 2. T’l == f)-

* Received February 9, 1928.
T Mathews: Theory of Numbers, pp. 93-95. D. H. Lehmer: Annals of Math., (2), vol. 27.
pp. 471-476. Cf. also Cunningham: Brit. Assn. Rept. 1907, p. 462.
1 Amer. Jour. of Math., vol. 1 (1877), pp. 184-240, 289-321.
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In general let 1, Dbe the nth term of the recuring sevies whose scale
is (1) so that . .
4 Wits = PWp1—Q Wy

and is determined uniquely by the choice of certain values for W, and Wi.
Then it is easy to verify that: :

(5) W = Wy Up—Q Wo Un-.

In fact the series W, thus defined satisfies the recurrence (4) and has
for =0 and n == 1 the proper values namely W, and W;. For example

(6) I/rn = PUn—QQ Z]n—l-

3. The Pellian case. Let us consider two functions X, and Y,
satisfring the recurrences: L
Xoan = 2 X Xowr — Xy Yote = 2Xi Y — Ya, °

with X, =1, I, = 0, and (X; ¥;) to be determined later. In the notation
of section 2,
@ F=1X, =1,
and (5) becomes:
Xn -— Xl Un = Un—l-

Comparing this with (6) and (7) and using (4) we have:

(R) X, = é Va, Y, = Y1Un.
Consider the expression: .
[46] Vi — AUS = 4Q"
From (8), (2) and (7) we have
X —1

=

(9) & 4’1213_' er == 1-
Thus far X; and 17 have been left arbitrary. Now we impose the con-
dition that

X —1

~ ST

where /) ix some integer, not a square. That is (X, 1;) are chosen so that

1\'12—' D)f - l.
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When this is done equation (9) becomes

(10) T —D¥a =1,

which shows that (X, Y») are multiple solutions of the Pell equation. The
initial values (X; Y;) are taken as the fundamental solution of (10) and
may be found by well known methods. From (3) we have:

_exi+Vaxi—s

6 = 5 = X +V D1,
N N =
p= 2= TN — 5V

4. Principle of substitution. Summing up the results of the preceding
section we have the following principle:

For every relation in Lucas’ theory there exists one n terms of the
multiple solutions of the Pell equation in which:

U;HVTH P) dez o Ayayb

are replaced by

Tl T 3. X0, 345, 1520 Y L +V D, X, —VDT

respeétively.
Thus the equations:
[6] Vn+6Un= 2an, Vn—aUn;——'?bn
become the familar relations: '
X+ VD T = L4V DT,
Xn—l‘ D Yn = (Xl"—l’ D Y1)n.
The formulas for negative arguments:
[50] U—n = — DYn/Qn, ‘r—n T I/n./Qn-
become: _ ‘
I’—n = = Yn_. X—-n = Xn.
The addition formulas:
[49] 2 Um+n- = Un Vo + Un Vm,
. 2 Vm—Hr = .Vm Vn + A Um Un.
become:
}7m+n T Ym Xn+ Yn Xm,
Xmﬁ—n == AYJn Xn + D 1’171. ’:z.,
and so on.

5. Algebraic theory of X, and Y,. A very large number of relations
may be written down by applying the principle of the foregoing section.
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The following relations together with those preceding constitute the most
important ones.

an 87 Xoy = 2X2—1 = XA+ DY3,
[3] YZn R 2Y7LXn,
[51] ' Xm—n = X (n = DYn Yn,

Y'm—n =3 Ym Xn e Y'n. Xm,
' 1 ]
YiXx =4 Vn—Fp = —2—(Yn+1 — Y1) = Yau— Y X,

Xn+7n Xn——m + D Yn—rm Yn—m = X2n,
Xn+m Xn-m_ D Yn+m Yn—m = X2m,

[33] Xﬁ—i—m T szz =, 1I-m Y2n+'my
[32] Yo in—¥a = Ym Yootm,
[52] 4Yn+Xm == 2X(n+m)/2 X(n—m)/Z’
Yn+ Ym =2 Y(n—i—m)/z X(u—m)/ﬁh
1 [!21] n n—i1—1 ;
Xn i 2)L—1 Xln + =~k (__ 1)7, T ( z 1 ) (2 Xl)lb—'2l’
=1 e
[70] :
B e
Yo = ¥, 20 ("7 ) @,
= |
X, = > (Q-i)pi(2 Yo (2 Xy,
i=0
v ) .
—1Y, — i(9 Y, )2 n—2i—1
¥, = 7, X (") D@ @ Xy
) n—1
X Zl W :
W F =0T 42 2D K, =2k,
1 = )
n—1
¥, I
[42] s SRUREHDE, 1N T3 M AR (n=2k-+1),
Y] i=0
n—2 _
T 3
141] 2 e F N (0 = 2F).
11 i=0

These are a very few of the hundreds of relations that exist between
the functions X, and Yn. A glance at Lucas’ memoir will indicate what
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is possible in this direction. Relations in terms of determinants, continued
fractions, binomial cocfficients, continued radicals, logarithms, cyclotomie
tunctions, infinite series etc. are included in the algebraic theory of X,, Y.

"~ Every formula in X,. Y, or D may be generalised by replacing these
quantities by X, T/ 1, and DY; respectively. By replacing X, by
cosm@, Y, by sinng/sing and D by sin®6, every relation in X, and Y,
may be transformed into a formula in cireular functions. 1f X is replaced
by coshny, ¥, by sinhny/sinhy. and D by sin®ny the hyperbolic functions
may be studied in like manner.

6. The arithmetic theory of X, and Y,. The equations (8) show
how intimate the connection is between the number-theoretic properties
of (Xn, Tu) and (U, Va). These equations are sufficient for the most part
to establish the following fundamental properties of X, and 1. As Car-
michaelt has pointed out, Lucas was inaccurate in certain of his theorems
by not allowing for the singularity of the prime 2 in his theory. Fortunately
9 is not such an exception in our discussion. The theorems marked with
a * cannot be deduced immediately from Lucas’ memoir. The present
writer in a paper which he hopes to publish shortly has considered an
extension of Lucas’ theory by which he has been able to strengthen many
of Lucas classical theorems. Some of the theorems marked - mdicate
the effects of this extension ou the theory of the Pell equation.

TuEOREM 1. X, and Y, are relatively prime. '

THEOREM 2. If the G.C.D. of m and m s d then the G. C.D.of Yn
and Y, is Ya. . ]

THEOREM 3. Y., is @ divisor of Yo if and only if m is « divisor of n.

COROLLARY: Every Yn is a multiple of Th. :

THEOREM 4. Xo is @ divisor of Xn if and only if n/m is an odd divisor
of n.

TueoREM B. If Yo is the first ¥ to contain the Sfactor m then Y
divisible by m if and only if n = ke. (The number w is called the rank
of apparition of m in the series ) . ; ;

* THEOREM 6. The number of terms less than Y, and prime to Yo, with
the crception of the ever present common factor Y,, ic Euler's ¢ (n).

* TyeoreM 7. If p is a prime factor of D prime to Y1, then Y1- Yo Yoo Xpn
= —(X,/p) (modp) where (X,/p) is Legendre's symbol. )

" This theorem. is an extension of Wilson's theorem. The converse of
this theorem is true and gives a theoretical test for primality. Theorems 3.
6 and 7 exhibit properties of 17, similar to those of the natural numbers.
Also compare theorems 9 and 10. '

+ Annals of Math. (2), vol. 13, pp. 30-70. ' d
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* THEOREM 8. If p is an odd prime not dividing DY, then its rank of

apparition is some divisor of %{p“‘(%)}
This is the law of apparition of a prime p and is an extension of

Fermat's theorem. In what follows p is a prime. _

THEOREM 9. If p divides Y, it divides T,. If p divides D, but not Y,
then the rank of apparition of p is p, and p occurs to the first power as
a divisor of Yp. -

THEOREM 10. If w 4s the rank of apparition of p* and if = is any
number prime to p, then l'zwp)_ contains the factor p*t* but no ligher
power of p.

This is the law of repetition of the prime p. Unlike Lucas’ law it
holds for p = 2.

* THEOREM 11. If m =[] P and i we define a function Y, by

o= ()]

wm == o i

where Legendre’s symbol is taken as zero if p divides D and where x is the
number of distinct prime factors of m not dividing D, then Yy, = 0 (modm).
This corresponds to Euler's ¢-function and his generalication of Formatis
theorem. Compare Mathewst who replaces W, by the L. C. M. of its
factors. _

*THEORENM 12. If m is prime to D the promitive odd prime factors of
Yu are of the form 2km £1, and those of X are of the form 4km 1.

*THEOREM 13. (a) If p is u prime of the form dn--1, then 4X,,/X,
and 4XYp/ Yy may both be put in the form t—Du*. (b) If p is -« prime
of the form dn—1, then 4 Xpr/ Xy may be put in the form t*+ Dpu® and
4T/ Yy may be put in the form D+ pu?.

This is an extension of Gauss' theorem about the cyclotomic function
4(@?—1)/(x—1). Attention should be called to certain inaccuracies in
Lucas’ results on this topic.

Finally we give three typical theorems for determining the primality
or non-primality of an integer N prime to 2DY,. The first is of theoretical
interest only, the secondi is a practical test for a general integer . The
third is not as impractical as it would first appear. Taken with equation (10)
it becomes a very effective test for the numbers in question.

THEOREM 14, If (N=1)/2 is the rank of apparition of N, then N is
« prime.

T Mathews, loc. cit., p. 94. )
i Compare the writer's note in the Bull. Amer. Math. Soc., vol. 34 (1928), p. b4.
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*TyupoREM 15, If Taer = 0 (mod N) and if Yvanipy =7 F 0 (mod N),
and if the G.C. D. of N and r is @, then the prime factors of Nle are
of the form kp“=x1 where « is the highest power to which the prime p
occurs as a factor of N*1.

*PaEoReM 16.  The number 2 —1 with n odd is a prime if and only
if it divides the mumerator of the convergent of order 2%! to the square
root of three.

In case the reader may wish to verify many of the above theorems
we subjoin a table giving the first 30 terms Y, of the most fundamental
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Introduc:

‘v '
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5 g hit
series namely D = 2 and also their prime factors. “..' k: n
aﬂ : crgned o
\stf n \ Yn Non-primitive factors Primitive factors jantit enbie o
e ‘ Ger cases, 1
| 1|2 — 2 ; ‘
| 2]12 92 3 ‘
3|70 2 5.7 '
41408 2%.3 17 L owhil xx
5| 2378 12 29 - 41 - Nodation
613860 192.82.5.7 11
7180782 12 132,939 =
8| 470832 l9t.5.17 577 "
9| 2744210 “‘2.5-7 197 - 199 )
10 | 15994428 92.3.99.41 1959 -. ;
11 | 93222358 2 93 .353 . 5741 | 3
12 | 543339720 ° 93.32.5.7.11-17 1158 ‘ ‘
13 | 3166815962 2 ' 79 - 599 - 33461 . J
| 14 | 18457556052 92.3.13%. 239 113 - 337 e and 1’ oan
| 15 | 107578520850 l9.5%.7.29.41 312.269
16 | 627013566048 . l95.8.17.577 | 665857 '
117 | 3654502875938 2 103 - 187 - 8297 - 15607 ;
18 | 21300003689550 192.33.5.7.11.197-199 | 13067 . YRR |
19 | 124145519261542 l2 37 - 179057 - 9369319
| 20 | 723573111879672 193.8.17-19-29-41.59 | 241 - 5521 v -
'.21 4217293152016490 i2.5-72-132-239 | 4668 - 45697
| 92 | 24580185800219268 92.3.923. 3535741 143.89 . 11483 ol
93 | 143263821649299118 19 | 47 . 929 . 982789 - 6771937
94 | 835002744095575440 l94.52.5.7.11.17-577-1153 | 9713729
95 | 4866752642924153522 9.99.41 | 1549 - 29201 - 45245801
96 | 28365513113449345692 | 22-3- 79599 - 33461 192307 - 66923
1 27 | 165326320037771920630 9.5.7.107.199 '53.146449 . 7761799
98| 963592443113182178088 | 2°.3.13%-17- 118.239 337 | 1535466241
) | 44360482149 63018038201

99 | H616225352641321147898 i
{ 30 \ 327337775527184744709300, 943%5%7.11.19-29 .31 41.50-269, 601+ 2281
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