Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4384 N1844 #181 Mar 23 2024 08:14:50
%S 1,7,25,63,129,231,377,575,833,1159,1561,2047,2625,3303,4089,4991,
%T 6017,7175,8473,9919,11521,13287,15225,17343,19649,22151,24857,27775,
%U 30913,34279,37881,41727,45825,50183,54809,59711,64897,70375,76153,82239
%N Centered octahedral numbers (crystal ball sequence for cubic lattice).
%C Number of points in simple cubic lattice at most n steps from origin.
%C If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 6-subsets of X intersecting each Y_i (i=1,2,3). - _Milan Janjic_, Aug 26 2007
%C Equals binomial transform of [1, 6, 12, 8, 0, 0, 0, ...] where (1, 6, 12, 8) = row 3 of the Chebyshev triangle A013609. - _Gary W. Adamson_, Jul 19 2008
%C Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 4, a(n-2) = -coeff(charpoly(A,x),x^(n-3)). - _Milan Janjic_, Jan 26 2010
%C a(n) = A005408(n) * A097080(n-1) / 3. - _Reinhard Zumkeller_, Dec 15 2013
%C a(n) = D(3,n) where D are the Delannoy numbers (A008288). As such, a(n) gives the number of grid paths from (0,0) to (3,n) using steps that move one unit north, east, or northeast. - _David Eppstein_, Sep 07 2014
%C The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^3 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of _Dmitry Zaitsev_'s Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 3 from any given point. - _Shel Kaphan_, Jan 02 2023
%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A001845/b001845.txt">Table of n, a(n) for n = 0..1000</a>
%H Luciano Ancora, <a href="https://upload.wikimedia.org/wikipedia/commons/9/9c/FigurateN.pdf">The Square Pyramidal Number and other figurate numbers</a>, ch. 4.
%H Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Section 2.3.
%H D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, <a href="http://www.cecm.sfu.ca/~choi/paper/lrh.pdf">A local Riemann hypothesis, I</a> pages 16 and 17
%H J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1098/rspa.1997.0126">Low-Dimensional Lattices VII: Coordination Sequences</a>, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Two Enumerative Functions</a>
%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Janjic/janjic33.html">Hessenberg Matrices and Integer Sequences </a>, J. Int. Seq. 13 (2010) # 10.7.8.
%H Milan Janjić, <a href="https://arxiv.org/abs/1905.04465">On Restricted Ternary Words and Insets</a>, arXiv:1905.04465 [math.CO], 2019.
%H G. Kreweras, <a href="http://www.numdam.org/item?id=BURO_1973__20__3_0">Sur les hiérarchies de segments</a>, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
%H G. Kreweras, <a href="/A001844/a001844.pdf">Sur les hiérarchies de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
%H T. P. Martin, <a href="http://dx.doi.org/10.1016/0370-1573(95)00083-6">Shells of atoms</a>, Phys. Reports, 273 (1996), 199-241, eq. (10).
%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992
%H R. G. Stanton and D. D. Cowan, <a href="http://dx.doi.org/10.1137/1012049">Note on a "square" functional equation</a>, SIAM Rev., 12 (1970), 277-279.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HauyConstruction.html">Haüy Construction</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/OctahedralNumber.html">Octahedral Number</a>
%H <a href="/index/Cor#crystal_ball">Index entries for crystal ball sequences</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F G.f.: (1+x)^3 /(1-x)^4. [conjectured (correctly) by _Simon Plouffe_ in his 1992 dissertation]
%F a(n) = (2*n+1)*(2*n^2 + 2*n + 3)/3.
%F First differences of A014820(n). - _Alexander Adamchuk_, May 23 2006
%F a(n) = a(n-1) + 4*n^2 + 2, a(0)=1. - _Vincenzo Librandi_, Mar 27 2011
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=7, a(2)=25, a(3)=63. - _Harvey P. Dale_, Jun 05 2013
%F a(n) = Sum_{k=0..min(3,n)} 2^k * binomial(3,k) * binomial(n,k). See Bump et al. - _Tom Copeland_, Sep 05 2014
%F From _Luciano Ancora_, Jan 08 2015: (Start)
%F a(n) = 2 * A000330(n) + A000330(n+1) + A000330(n-1).
%F a(n) = A005900(n) + A005900(n+1).
%F a(n) = A005900(n) + A000330(n) + A000330(n+1).
%F a(n) = A000330(n-1) + A000330(n) + A005900(n+1). (End)
%F a(n) = A002412(n+1) + A016061(n-1) for n > 0. - _Bruce J. Nicholson_, Nov 12 2017
%F E.g.f.: exp(x)*(3 + 18*x + 18*x^2 + 4*x^3)/3. - _Stefano Spezia_, Mar 14 2024
%F Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 5/6 - log(2) = (1 - 1/2 + 1/3) - log(2). - _Peter Bala_, Mar 21 2024
%t Table[(4 n^3 - 6 n^2 + 8 n - 3)/3, {n, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Jan 15 2011 *)
%t LinearRecurrence[{4, -6, 4, -1}, {1, 7, 25, 63}, 40] (* _Harvey P. Dale_, Jun 05 2013 *)
%t CoefficientList[Series[(1 + x)^3/(-1 + x)^4, {x, 0, 20}], x] (* _Eric W. Weisstein_, Sep 27 2017 *)
%o (PARI) a(n)=(2*n+1)*(2*n^2+2*n+3)/3 \\ _Charles R Greathouse IV_, Dec 06 2011
%o (Haskell)
%o a001845 n = (2 * n + 1) * (2 * n ^ 2 + 2 * n + 3) `div` 3
%o -- _Reinhard Zumkeller_, Dec 15 2013
%Y Sums of 2 consecutive terms give A008412.
%Y (1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
%Y Partial sums of A005899.
%Y Cf. A001846, A001847, A001848, etc., A014820, A013609.
%Y Cf. also A240876, A002412, A016061, A005899.
%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%Y Row/column 3 of A008288.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_