BULLETIN 13 (3), 1970

ON POINT-SYMMETRIC TOURNAMENTS

BY BRIAN ALSPACH(1)

1. Introduction. A tournament is a directed graph in which there is exactly one arc between any two distinct vertices. Let $\alpha(T)$ denote the automorphism group of T. A tournament T is said to be point-symmetric if $\alpha(T)$ acts transitively on the vertices of T. Let g(n) be the maximum value of $|\alpha(T)|$ taken over all tournaments of order n. In [3] Goldberg and Moon conjectured that $g(n) \le \sqrt{3}^{n-1}$ with equality holding if and only if n is a power of 3. The case of point-symmetric tournaments is what prevented them from proving their conjecture. In [2] the conjecture was proved through the use of a lengthy combinatorial argument involving the structure of point-symmetric tournaments. The results in this paper are an outgrowth of an attempt to characterize point-symmetric tournaments so as to simplify the proof employed in [2].

The construction discussed in §2 was used in [1] as a means of producing regular tournaments. The analogous construction for graphs was employed by J. Turner in [6] independent of any knowledge of [1]. There is an obvious generalization to directed graphs.

We list some of the terminology used in this paper. If there is an arc from the vertex u to the vertex v in T, we write $(u, v) \in T$. If S is a subset of the vertex set of T, then $\langle S \rangle$ denotes the subtournament whose vertex set is S. We use the symbol " \simeq " to denote isomorphism between tournaments. The sets $\mathcal{O}(u) = \{v \in T: (u, v) \in T\}$ and $\mathcal{I}(u) = \{v \in T: (v, u) \in T\}$ are called the *outset* and *inset* of u, respectively. The score s(u) of the vertex u is given by $s(u) = |\mathcal{O}(u)|$. The score sequence of T is the sequence $(s_1, s_2, \ldots, s_{|T|})$ of scores of the respective vertices of T written so that $s_1 \leq s_2 \leq \cdots \leq s_{|T|}$. Throughout this paper all subscripts are understood modulo 2n+1.

2. Main results. Consider a fixed integer of the form 2n+1, $n \ge 1$. Let $S = \{\alpha_1, \ldots, \alpha_n\}$ be a set of n distinct integers chosen from $1, 2, \ldots, 2n$ with the property that $\alpha_i + \alpha_j \ne 2n+1$ for any two α_i , α_j in S. Construct a directed graph T with vertices v_0, v_1, \ldots, v_{2n} as follows: There is an arc from v_i to v_j if and only if $j-i \equiv \alpha_k \pmod{2n+1}$ for some $\alpha_k \in S$. It is not difficult to see that T is a regular tournament of degree n. Any tournament that is constructible in the above manner is called a rotation tournament and S is called the symbol of the rotation tournament.

Received by the editors June 27, 1969.

A198

⁽¹⁾ This research was supported by the National Research Council.

It is easy to see that the permutation $(v_0 v_1 \dots v_{2n})$ is an automorphism of T and this proves the following result.

PROPOSITION 1. A rotation tournament is a point-symmetric tournament.

Moreover, if T is a tournament of order m and the automorphism group of T possesses an m-cycle $(v_0 \ v_1 \dots v_{m-1})$, then T is a rotation tournament with symbol $S = \{j: (v_0, v_j) \in T\}$. The following proposition has been proved.

PROPOSITION 2. A tournament T of order m is a rotation tournament if and only if $\alpha(T)$ possesses an m-cycle.

We are interested in the question of whether or not the construction given above produces all the point-symmetric tournaments. By Propositions 1 and 2 an equivalent question is the following: If T is a point-symmetric tournament of order 2n+1, does $\alpha(T)$ possess a (2n+1)-cycle? In the case that 2n+1 is a prime the latter question is easy to answer. For if 2n+1 is a prime and $\alpha(T)$ acts transitively on the vertices of T, then 2n+1 divides $|\alpha(T)|$ and, thus, $\alpha(T)$ contains a (2n+1)-cycle [6, Theorem 3.2 and Exercise 3.12]. We have proved the following result.

THEOREM 1. A tournament T of prime order is point-symmetric if and only if it is a rotation tournament.

The first non-prime case to consider is 2n+1=9. There are 15 regular tournaments of order 9 of which three are point-symmetric. It can be verified directly that all three of them are also rotation tournaments. However, we shall give a proof that every point-symmetric tournament of order 9 is a rotation tournament as it employs a technique that is useful for point-symmetric tournaments of larger composite order.

Let T be a point-symmetric tournament of order 9. Let u_0 be a fixed vertex of T and let a_{u_0} denote the stabilizer of u_0 , i.e., $a_{u_0} = \{ \sigma \in a(T) : \sigma(u_0) = u_0 \}$. Notice that α_{u_0} is, in a very natural way, the automorphism group of $\langle T-u_0\rangle$. Since $\mathcal{O}(u_0)$ contains four elements and the orbits of the automorphism group of any tournament have odd cardinality because every permutation in an odd order permutation group is a product of disjoint cycles of odd length and any automorphism group of a tournament has odd order by [4], a_{u_0} must fix at least one element of $\mathcal{O}(u_0)$. Let u_1 be a vertex of $\mathcal{O}(u_0)$ fixed by a_{u_0} . Therefore, if $H = \{ \sigma \in \alpha(T) : \sigma(u_0) = u', u' \text{ a} \}$ fixed vertex of T, then each $\sigma \in H$ maps u_1 to the same vertex of T. In particular, every $\sigma \in a(T)$ that maps u_0 to u_1 maps u_1 to the same vertex of T, call it u_2 . Since $\langle T-u_0\rangle \simeq \langle T-u_1\rangle$, each $\sigma \in \alpha(T)$ that maps u_1 to u_2 maps u_2 to the same vertex of T, call it u_3 . Either $u_3 = u_0$ or we can continue this process until we obtain a sequence u_0, u_1, \ldots, u_t of distinct vertices of T such that every $\sigma \in a(T)$ for which $\sigma(u_0) = u_1$ also satisfies $\sigma(u_1) = u_2$, $\sigma(u_2) = u_3$, ..., $\sigma(u_{j-1}) = u_j$, and $\sigma(u_j) = u_0$. If u_0, u_1, \ldots, u_j does not exhaust all the vertices of T, pick a $u'_0 \in T$ not appearing in the sequence. For every $\tau \in \alpha(T)$ such that $\tau(u_0) = u_0'$ we also have $\tau(u_1) = u_1', \ldots,$

 $\tau(u_j) = u_j'$ with $\{u_0, u_1, \ldots, u_j\} \cap \{u_0', u_1', \ldots, u_j'\} = \emptyset$. Hence, either u_0, u_1, \ldots, u_j exhausts all the vertices of T or the vertices of T can be decomposed into mutually disjoint sequences of vertices of T having the same property as u_0, u_1, \ldots, u_j with respect to automorphisms and such that $\langle \{u_0, u_1, \ldots, u_j\} \rangle \simeq \langle \{v_0, v_1, \ldots, v_j\} \rangle$ via the isomorphism $u_0 \to v_0, \ldots, u_j \to v_j$, where v_0, v_1, \ldots, v_j denotes any of the other sequences.

If u_0, u_1, \ldots, u_8 exhausts all nine vertices of T, then $\sigma = (u_0 \ u_1 \ldots u_8)$ is an automorphism of T. There is only one possibility remaining, namely, $\alpha(T)$ is imprimitive with three blocks (see [7]), say $\{u_0, u_1, u_2\}$, $\{u_3, u_4, u_5\}$, and $\{u_6, u_7, u_8\}$. Every $\sigma \in \alpha_{u_0}$, the stabilizer of u_0 , fixes u_0 , u_1 , and u_2 . Suppose some $\sigma \in \alpha_{u_0}$ moves one of the other vertices. Without loss of generality assume $\sigma(u_3) \neq u_3$. Then either $\sigma(u_3) = u_4$ or $\sigma(u_3) = u_5$ for otherwise σ would contain an even cycle in its disjoint cycle decomposition which cannot happen.

By considering what happens to the remaining vertices of T under any automorphism containing the 3-cycle (u_0, u_1, u_2) , we see that all arcs between two distinct 3-blocks must have the same orientation. Therefore, $(u_0 u_3 u_6 u_1 u_4 u_7 u_2 u_5 u_8) \in \alpha(T)$ and T is a rotation tournament.

We may assume every $\sigma \in \alpha_{u_0}$ fixes every vertex of T, that is, $|\alpha_{u_0}| = 1$ which implies $|\alpha(T)| = 9$. To within isomorphism there are two transitive permutation groups of order nine in S_9 . One is cyclic and generated by a 9-cycle and, hence, corresponds to a rotation tournament. The other is generated by two permutations σ_1 , σ_2 , of the form $\sigma_1 = (1\ 2\ 3)(4\ 5\ 6)(7\ 8\ 9)$ and $\sigma_2 = (1\ 4\ 7)(2\ 5\ 8)(3\ 6\ 9)$. By using the process described in the addendum to [3] it can be shown that the latter permutation group is not the automorphism group of a tournament of order nine. Therefore, every point-symmetric tournament of order nine is a rotation tournament.

We now consider the point-symmetric tournaments of order fifteen. Let α_u denote the stabilizer of the vertex u in a point-symmetric tournament T of order fifteen. If the orbits of α_u are $\{u\}$, $\mathcal{O}(u)$, and $\mathcal{I}(u)$, then the transitive constituents of α_u [see 7] in $\mathcal{O}(u)$ and $\mathcal{I}(u)$ must each contain a 7-cycle. Therefore, $\langle \mathcal{O}(u) \rangle$ and $\langle \mathcal{I}(u) \rangle$ are both rotation tournaments of order seven of which there are two to within isomorphism. By considering the four possible cases for $\langle \mathcal{O}(u) \rangle$ and $\langle \mathcal{I}(u) \rangle$ it can be shown through a tedious argument that it is impossible for the orbits of α_u to be $\{u\}$, $\mathcal{O}(u)$, and $\mathcal{I}(u)$. Therefore, α_u fixes a point of either $\mathcal{O}(u)$ or $\mathcal{I}(u)$. We assume without loss of generality that α_u fixes a point of $\mathcal{O}(u)$ since T and T^* have the same automorphism group where T^* denotes the converse tournament of T.

We proceed as before via some fixed point of $\mathcal{O}(u)$ under α_u . If $\alpha(T)$ is primitive, then T must be a rotation tournament. Otherwise there are three 5-blocks or five 3-blocks. Suppose we have the blocks $\{u_1, u_2, u_3, u_4, u_5\}$, $\{u_6, u_7, u_8, u_9, u_{10}\}$, and $\{u_{11}, u_{12}, u_{13}, u_{14}, u_{15}\}$. Let $B_1 = \langle \{u_1, u_2, \dots, u_5\} \rangle$, $B_2 = \langle \{u_6, u_7, \dots, u_{10}\} \rangle$, and $B_3 = \langle \{u_{11}, u_{12}, \dots, u_{15}\} \rangle$. If any automorphism $\sigma \in \alpha_{u_1}$, the stabilizer of u_1 , moves some vertex in B_1 or B_2 , then following the argument used in the order nine case

we see that all arcs between two distinct B_i 's must have the same orientation and, therefore, the permutation $(u_1 u_6 u_{11} u_2 u_7 u_{12} \dots u_5 u_{10} u_{15}) \in a(T)$. Now suppose we have the decomposition $\{u_1, u_2, u_3\}$, $\{u_4, u_5, u_6\}$, $\{u_7, u_8, u_9\}$, $\{u_{10}, u_{11}, u_{12}\}$, and $\{u_{13}, u_{14}, u_{15}\}$ where each set of three vertices forms a 3-block in T. Notice that $\alpha(T)$ induces an odd order transitive permutation group on the five 3-blocks as the object set. Since no odd order transitive subgroup of S_5 contains a 3-cycle, there is no $\sigma \in \alpha(T)$ that maps exactly three of the 3-blocks onto different 3-blocks. If any $\sigma \in a_{u_1}$ moves some vertex in another 3-block, say $\sigma(u_4) \neq u_4$, then by the preceding remark and the fact there are no even cycles appearing in the cycle decomposition of σ , we have that $\sigma(u_4) = u_5$ or u_6 and all the arcs between $\langle \{u_1, u_2, u_3, u_4, u_6\} \rangle$ u_3 and $\langle \{u_4, u_5, u_6\} \rangle$ have the same orientation. By examining σ 's action on the remaining three 3-blocks we see that all the arcs between two distinct 3-blocks have the same orientation. Thus there is a 15-cycle in $\alpha(T)$. Therefore, we are left with the case that $|a_{u_1}| = 1$, i.e., |a(T)| = 15. However, to within isomorphism there is only one transitive permutation group in S_{15} of order fifteen and it is generated by a 15-cycle. Therefore, every point-symmetric tournament of order fifteen is a rotation tournament.

Consider the following three 7×7 matrices:

Let T be the tournament of order twenty-one whose incidence matrix is given by

$$\left(\begin{array}{c|c|c} A_1 & A_2 & A_3 \\ \hline A_3 & A_1 & A_2 \\ \hline A_2 & A_3 & A_1 \end{array}\right).$$

The score sequence of $\langle \mathcal{O}(u_1) \rangle$ is (3, 3 4, 4, 4, 5, 5, 6, 7) and the four vertices

with score four form a transitive quadruple implying the automorphism group of $\langle \mathcal{O}(u_1) \rangle$ is the identity group. Similarly, the score sequence of $\langle \mathcal{I}(u_1) \rangle$ is (2, 3, 4, 4, 5, 5, 5, 6, 6) and the four vertices with score five form a strongly connected quadruple implying the automorphism group of $\langle \mathcal{I}(u_1) \rangle$ is the identity group. In particular, $|a_{u_1}| = 1$.

It is easy to check that the two permutations

$$\sigma = (u_1 \ u_8 \ u_{15})(u_2 \ u_9 \ u_{16}) \dots (u_7 \ u_{14} \ u_{21})$$

and

$$\tau = (u_1 u_7 u_6 u_5 u_4 u_3 u_2)(u_8 u_{13} u_{11} u_9 u_{14} u_{12} u_{10})(u_{15} u_{18} u_{21} u_{17} u_{20} u_{16} u_{19})$$

are in $\alpha(T)$. Since $A_{u_1} = \{1\}$, the given permutations σ and τ , with $\tau^7 = \sigma^3 = 1$, generate a group of order 21. Observing that $(\sigma\tau)(u_1) = u_{14}$ while $(\tau\sigma)(u_1) = u_{13}$, we see that the group is non-abelian, hence non-cyclic, and, therefore, contains no element of order 21. Hence, T is an example of a point-symmetric tournament that is not a rotation tournament.

An anti-automorphism of a tournament T is a mapping σ of the vertex set of T onto itself satisfying $(u, v) \in T$ if and only if $(\sigma(u), \sigma(v)) \notin T$ for every pair of distinct vertices u and v belonging to T. A tournament T is said to be self-converse if it has an anti-automorphism, that is, if $T \simeq T^*$.

Proposition 3. A rotation tournament is self-converse.

Proof. Let T be a rotation tournament with vertices u_0, u_1, \ldots, u_{2n} . The permutation σ defined by $\sigma(u_i) = u_{2n-i+1}$ is easily seen to be an anti-automorphism of T. Thus $T \simeq T^*$.

An anti-automorphism of a tournament T composed with an automorphism of T results in an anti-automorphism of T. Therefore, if T is point-symmetric and self-converse, there exists an anti-automorphism of T that fixes any vertex one chooses. Let T denote the order twenty-one tournament exhibited above. If T is self-converse, there exists an anti-automorphism of T that maps $\mathcal{O}(u)$ onto $\mathcal{I}(u)$ with the four vertices of score four in $\langle \mathcal{O}(u) \rangle$ going onto the four vertices of score five in $\langle \mathcal{I}(u) \rangle$. But since one quadruple is transitive and the other is strongly connected we see that no such anti-automorphism exists. Therefore, T is not self-converse.

This suggests the following question: If T is a self-converse point-symmetric tournament, is T a rotation tournament?

3. Enumeration of rotation tournaments. We now consider the problem of enumerating the rotation tournaments of a given order. Let C_n denote the set of all symbols of the rotation tournaments of order 2n+1 so that $|C_n|=2^n$. For each integer m satisfying $1 \le m < 2n+1$ with m and 2n+1 relatively prime define $P_{n,m}$ by $P_{n,m}(S) = mS = \{x_i \equiv m\alpha_i \pmod{2n+1}: 1 \le x_i \le 2_n\}$ where $S \in C_n$. It is easy to see $P_{n,m}$ is a permutation on C_n . The set of all such $P_{n,m}$ form a permutation group,

call it G_n , acting on C_n . The number of orbits in C_n under the group G_n is given by the result [5, Theorem 3.21]

$$\frac{1}{\varphi(2n+1)}\sum_{G_n}F(P_{n,m})$$

where $F(P_{n,m})$ is the number of symbols fixed by $P_{n,m}$ and φ denotes the Euler φ -function. Denote the number of orbits by g(n).

If $S'=mS=P_{n,m}(S)$, then the mapping π defined on $(u_0, u_1, \ldots, u_{2n})$ by $\pi(u_i)=u'_{mi}$ is an isomorphism between the tournaments corresponding to S and S'. Thus, g(n) gives us an upper bound for the number of non-isomorphic rotation tournaments of order 2n+1. The results obtained in [6] apply equally well to circulant tournament matrices so that in case 2n+1 is a prime we have that two rotation tournaments are isomorphic if and only if their corresponding symbols are in the same orbit. Theorem 1 then proves the following result.

THEOREM 2. If 2n+1 is a prime, then the number of non-isomorphic point-symmetric tournaments of order 2n+1 is

$$g(2n+1) = \frac{1}{2n} \sum_{G_n} F(P_{n,m}).$$

Letting r(n) denote the number of non-isomorphic rotation tournaments of order 2n+1 and t(n) denote the number of non-isomorphic point-symmetric tournaments of order 2n+1 we have the following table.

Α	2086.	A49288	A2087
n	g(n)	r(n)	t(n)
1	1	1	1
2	1	1	1
3	2	2	2
4	4	3	3
5	4	4	4
6	6	6	6
7	16	16	16
8	16	16	16
9	30	30	30
10	88		

REFERENCES

- 1. B. Alspach, A class of tournaments, unpublished doctoral dissertation, University of California, Santa Barbara, 1966.
- 2. —, A combinatorial proof of a conjecture of Goldberg and Moon, Canad. Math. Bull. 11 (1968), 655-661.
- 3. M. Goldberg and J. W. Moon, On the maximum order of the group of a tournament, Canad. Math. Bull. 9 (1966), 563-569.

A2086

- 4. J. W. Moon, Tournaments with a given automorphism group, Canad. J. Math. 16 (1964) 485-489.
 - 5. J. Rotman, The theory of groups: An introduction, Allyn and Bacon, Boston, 1966.
- 6. J. Turner, *Point-symmetric graphs with a prime number of points*, J. Comb. Theory 3 (1967), 136–145.
- 7. H. Wiclandt, Finite permutation groups, Trans. R. Bercov, Academic Press, New York, 1964.

SIMON FRASER UNIVERSITY,
BURNABY, BRITISH COLUMBIA