login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002373
Smallest prime in decomposition of 2n into sum of two odd primes.
(Formerly M2273 N0899)
32
3, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 5, 7, 3, 3, 5, 7, 3, 5, 3, 3, 5, 3, 5, 7, 3, 5, 7, 3, 3, 5, 7, 3, 5, 3, 3, 5, 7, 3, 5, 3, 5, 7, 3, 5, 7, 19, 3, 5, 3, 3, 5, 3, 3, 5, 3, 5, 7, 13, 11, 13, 19, 3, 5, 3, 5, 7, 3, 3, 5, 7, 11, 11, 3, 3, 5, 7, 3, 5, 7, 3, 5, 3, 5, 7, 3, 5, 7, 3, 3, 5, 7, 11, 11, 3, 3, 5, 3
OFFSET
3,1
COMMENTS
See A020481 for another version.
a(A208662(n)) = A065091(n) and a(m) <> A065091(n) for m < A208662(n). - Reinhard Zumkeller, Feb 29 2012
Records are in A025019, their indices in A051610. - Ralf Stephan, Dec 29 2013
Note that these primes do not all belong to a twin prime pair. The first instance is a(110) = 23. - Michel Marcus, Aug 17 2020 from a suggestion by Pierre CAMI
REFERENCES
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 80.
N. Pipping, Neue Tafeln für das Goldbachsche Gesetz nebst Berichtigungen zu den Haussnerschen Tafeln, Finska Vetenskaps-Societeten, Comment. Physico Math. 4 (No. 4, 1927), pp. 1-27.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MATHEMATICA
Table[k = 2; While[q = Prime[k]; ! PrimeQ[2*n - q], k++]; q, {n, 3, 100}] (* Jean-François Alcover, Apr 26 2011 *)
Table[Min[Flatten[Select[IntegerPartitions[2*n, {2}], AllTrue[ #, OddQ] && AllTrue[#, PrimeQ]&]]], {n, 3, 100}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 31 2020 *)
PROG
(Haskell) a002373 n = head $ dropWhile ((== 0) . a010051 . (2*n -)) a065091_list -- Reinhard Zumkeller, Feb 29 2012
(PARI) a(n)=forprime(p=3, n, if(isprime(2*n-p), return(p))) \\ Charles R Greathouse IV, May 18 2015
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Ray Chandler, Sep 19 2003
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy