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 Arctanh(z) and the Legendre polynomials 
Peter Bala, March 19 2024 

Gauss's continued fraction for the function arctanh(z) is 

  z/(1 – 1^2*z^2/(3 – 2^2*z^2/(5 – 3^2*z^2/(7 - ... )))) ... (1) 
valid for complex z not in either of the intervals (-oo, -1] 

or [1, oo).

In this note we find expressions in terms of Legendre polynomials 

for both the numerator and denominator polynomials of the n-th 

convergent of Gauss's continued fraction.

This allows us to give rapidly converging series for some well-

known constants.
 

- - - - - - - - - - - - - - - - - - - -

We begin by replacing z with 1/z in (1) and then making use of 

equivalence transformations to obtain the continued fraction 

representation

     arctanh(1/z)  = 

1/(z – 1/(3*z – 2^2/(5*z – 3^2/(7*z - ... - (n - 1)^2/

((2*n – 1)*z - ... )))))       ... (2)
valid for complex z not in the closed interval [-1, 1].

Let N(n,z)/D(n,z) denote the n-th convergent to the continued 

fraction (2):

N(n, z)/D(n, z) = 1/(z – 1/(3*z – 2^2/(5*z – 3^2/(7*z - ... - 

(n - 1)^2/((2*n – 1)*z))))).

The first four convergents (numbered 1 through 4) are 

   1/z,  3*z/(3*z^2 – 1),  z*(4*z^2 - 15)/(3*(3*z^2 – 5)) and
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   5*z*(21 - 11*z^2)/(3*(3*z^4 - 30*z^2 + 35)).

By the elementary theory of continued fractions, both the sequence

of numerator polynomials {N(n, z)} and the sequence of 

denominator polynomials {D(n, z)} satisfy the 3-term recurrence 

 u(n, z) = (2*n – 1)*z*u(n-1, z) - (n – 1)^2*u(n-2, z)  ... (3)
for n >= 3, with the initial values 

        N(1,z) = 1,    N(2, z) = 3*z
and

       D(1, z) = z,    D(2, z) = 3*z^2 – 1.

The following theorem gives explicit expressions for the

polynomials N(n, z) and D(n, z) in terms of Legendre polynomials. 

Theorem. Let P(n,z) denote the n-th Legendre polynomial. Then
(i)  D(n, z) = n!*P(n, z)

(ii) N(n, z) = D(n, z) * Sum_{k = 1..n} 1/(k*P(k-1, z)*P(k, z)) 
 
Proof. 
The Legendre polynomials satisfy the 3-term recurrence

 n*P(n, z) = (2*n – 1)*z*P(n-1, z) – (n – 1)*P(n-2, z)   ... (4)
with P(1, z) = z and P(2, z) = (3*z^2 – 1)/2. Thus (i) holds 

for n = 1 and n = 2.

Multiplying (4) by (n - 1)! we see that the polynomial sequence

{n!*P(n, z)} satisfies the same recurrence (3) 

   u(n, z) = (2*n – 1)*z*u(n-1, z) - (n – 1)^2*u(n-2, z)

satisfied by the denominator polynomials D(n, z), and with the 

same initial conditions.

Thus the polynomial sequences {D(n, z)} and {n!*P(n, z)} are 

identical, completing the proof of (i).
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(ii) Define

 A(n, z) = D(n, z)*Sum_{k = 1..n} 1/(k*P(k-1, z)*P(k, z)) ... (5)
We calculate the initial values

      A(1, z) = 1 = N(1, z) 
and
  
      A(2, z) = 3*z = N(2, z).
 
We show that the sequence {A(n, z)} also satisfies the

3-term recurrence (3) satisfied by the sequence {N(n, z}}, hence 

proving that A(n, z) = N(n, z) for all n. 

From (5),

A(n+1, z) = D(n+1, z) * Sum_{k = 1..n+1} 1/(k*P(k-1, z)*P(k, z)) 

     = D(n+1, z) * Sum_{k = 1..n} 1/(k*P(k-1, z)*P(k, z))  

            +  D(n+1, z)/((n + 1)*P(n, z)*P(n+1, z))

          = (D(n+1, z)/D(n, z)) * A(n, z) 
       
             + D(n+1, z)/((n + 1)*P(n, z)*P(n+1, z)).

Substituting the value D(n, z) = n!*P(n, z) from part (i) and 

multiplying both sides of the resulting identity by P(n, z) we 

find that

 P(n, z)*A(n+1, z) = (n + 1)*P(n+1, z)*A(n, z) + n!.    ... (6)
Hence 

P(n+1, z)*A(n+2, z) = (n + 2)*P(n+2, z)*A(n+1, z) + (n + 1)!

  ... (7)
Multiply (6) by n + 1, subtract the result from (7) and then

replace n with n - 2. Making use of the recurrence equation 

(4) for the Legendre polynomials we find after a short calculation

that A(n, z) satisfies the same 3-term recurrence (3)

  A(n, z) = (2*n – 1)*z*A(n-1, z) - (n – 1)^2*A(n-2, z)
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satisfied by the numerator polynomials N(n, z), completing the

proof of part (ii). 

Corollary 1.
     arctanh(1/z) = lim_{n -> oo} N(n, z)/D(n, z)

                = Sum_{k > = 1} 1/(k*P(k, z )*P(k-1, z))

valid for complex z not in the closed interval [-1, 1].

This result allows us to give rapidly converging series for values

of some well-known constants, for example,

i*atanh(1/i) = Pi/4 = Sum_{n >= 1} i/(n*P(n, i)*P(n-1, i)),

2*arctanh(1/2) = log(3) = 2*Sum_{n >= 1} 1/(n*P(n, 2)*P(n-1, 2)) 

and 

2*arctanh(1/3) = log(2) = 2*Sum_{n >= 1} 1/(n*P(n, 3)*P(n-1, 3)). 

The last result is due to Burnside.

Corollary 2.
The n-th convergent of Gauss's continued fraction (1) 

z/(1 – 1^2*z^2/(3 – 2^2*z^2/(5 – ... (n - 1)^2*z^2/(2*n-1)))) 

is equal to N(n, 1/z)/D(n, 1/z). 

The finite continued fraction has a Taylor expansion around z = 

0 equal to

z + z^3/3 + z^5/5 + z^7/7 + ... + z^(2*n-1)/(2*n – 1) +

O(z^(2*n+1)).

Thus the rational function N(n, 1/z)/D(n, 1/z) is a Padé 

approximant to arctanh(z): more precisely, N(2*n+1, 1/z)/D(2*n+1, 

1/z) is the [2*n+1, 2*n] Padé approximant to arctanh(z) and  

N(2*n, 1/z)/D(2*n, 1/z) is the [2*n-1, 2*n] Padé approximant to 

arctanh(z).




