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This paper focuses on fanout-free networks of
multivalued 2-input l-output gates. A synthesis
technique is demonstrated which is similar to the
partition matrix approach used for binary networks.

A special case of the fanout-free network, the
cascade, is also-considered. A recurrence relation
for the number of cascade realizable functions is
derived. 1t is shown that the addition of only

one rail in a multi-rail binary cascade substantially
increases the number of realized functionms.

1. Introduction

Fanout-free networks of binary gates have
received considerable attention recently (e.g.
Hayesl, Marouka and Honda“, Butler and Breeding~,
Chakrabarti and Kolp~, and Kodandapani and Seths).
In such networks each gate output and each met input
are applied only one gate input. Thus, the struc-
ture 1s a tree whose root node is a gate supplying
the (single) network output. Since there is only

¢ ae path from each input to the output, fault tests

L:e easily implemented. Furthermore, fanout-free
networks require fewer gates than non-fanout-free
nets with the same number of inputs.

Networks of multivalued gates share these
advantages, and it is the aim of this paper to
present design techniques for such networks. The
gates used have two Iinputs and one output. It will
be assumed that all 2-variable m-valued functions
are available, although, as it is shown later, not
all gate types are necessary for the realization
of every fanout-free function.

Also considered in this paper is the cascade
(Maitra6, Yoeli718),
consists of a single string of interconnected gates,
The synthesis techniques are a special case of the
techniques described for general fanout-free nets.
Also, a recursion relation derived shows that an
extremely large number of functions is realized by
a cascade of only moderate size. A number of
researchers (Short”, Yoelilo, and Sungll) have in-
vestigated multirail binary cascades, and it is well
known that the theory of single-rail multivalued
cascades is closely related to the theory of
multirail binary cascades. This analogy is used
to derive a recursion relation for the number of
functions realized by multirail binary cascades.

I1. Synthesis Technique for Multivalued
Fanout-Free Networks

i The approach used here is an extension of t?sA
artition matrix technique applied by Ashenhurst
*Supported in part by NSF Grant MCS-7600326.

a fanout-free network which -
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and Curtisl3 to binary functions. It is related to
the techniques for multivalued networks described
by Muzio and Millerl4,15,

In particular, let Z = {z], z3, ..., z,} be a
set of m-valued variables and let f(Z) be an m-valued
function on Z. The values of zy and f will be de-
noted 0, 1, ..., m-1. f£(Z) has a simple disjunctive
decomposition (SDD) if and only if

£(2) = F(g(X), Y) (1)
where XU Y =2 and XN Y = . The SDD is nontrivial
if IXI > 1 and |Y| 2 1. f(Z) can be realized by

two interconnected networks realizing g(X) and
F(g,¥).

An important tool for the identification of
SDD's is the partition matrix. Specifically, the
YlX partition matrix has mTXT columns and m Yl rows
labeled by all possible assignments of values to X
and Y, respectively. Each square contains the value
of f for the assignment of values to X corresponding
to the column labelling and for the assigmment of
values to Y corresponding to the row labelling. Fig.
1 shows the partition matrix of a 3-valued 4-variable
function. The column (row) multiplicity v (y) is the
number of distinct columns (rows) in the matrix. For
this example, v =y = 3,
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Figure 1. The Z3ZL|2122 Partition Matrix of

fl(zl,zz,z3,za).
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Theorem 1: £(Z), an m-valued function, has the SDD

( £(2) = F(g(X), Y)
if and only if 1its YIX partition matrix has column
multiplicity v € m. -

The 3-valued function shown in Fig. 1 satisfies
Theorem 1 and thus has the SDD

fl(zl.z2.23,24) = Fl(gl(zl,zz),z3,z4). (2)
The transpose matrix also satisfies the condition
of Theorem 1 and therefore f1 can be expressed as
fl(zl’ZZ’ZB’ZA) = F2(82(23’24 ,zl,zz). (3)

However, the existence of two SDD's of the form (2)
and (3) implies the existence of the complex disjunc-
tive decomposition (CDD),

£1(2)525525,2,) = Fo(g) (2),2,), 8,(z3,2,))  (4)
Eq. (4) can also be obtained from_the following ex-
tention of Theorem 4.2 of Curtisl3,

Theorem 2: f£(Z), an m-valued function, has the CDD,

£(2) = F(g, (X), g,(¥)) (5)
if and only if its YIX partition matrix has column

multiplicity, v £ m and row multiplicity u < m,

Functions F, gj, and gy can be obtained directly
from the YIX partition matrix. Arbitrarily, assign to
each of the y distinct rows a value 0, 1, ..., m-1,
Ll that two different rows have different values.

'columns are labled in a similar manner. In the
example of Fig. 1, choices for column and row assign-
ments are shown along the top and left side, respec-
tively.

81, 82 and F are then defined by these entries.
For example, since zyz9 = 02 corresponds to 2,
£1(0,2) = 2. Since z3z, = 21 corresponds to O,
-89(2,1) = 0 and, since £,(0,2,2,1) = 1, F3(2,0) = 1.
Fig. 2 shows the complete functions.
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and F,_.

Figure 2. 3

Partition Matrices of gl,gz,

Since 81:85> and F_ are realized by 2-input

3
l-output 3-valued gates, a fanout-free realization of
Fig. 3.
fl(zl’ZZ’ZB’ZA) has the form shown in g
Note that if gj and gy of (5) have missing logic
levels, the value of F can be chosen arbitrarily for

f e levels (don't cares).
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Figure 3. A Fanout-Free Realization of £..
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II1. General Synthesis Algorithm

In the manner of the previous example, a syn-
thesis algorithm for a fanout-free function f proceeds
as follows: ’

1. Find all CDD's of F, generating for each two
subfunctions gl(X) and gZ(Y). If |X] =1 or
2, gl(X) is fanout-free and no further test of
g; is required. Similarly, if Iyl =1 or 2,
g, is fanout-free and no further test is re-
quired.

2. Test all subfunctions generated from Step 1 for

CDD's. Continue in this way until no CDD's are
found (algorithm halts unsuccessfully) or all
subfunctions depend on one or two variables
(algorithm halts successfully).

As in the example, there will be a number of
choices for thg subfunctions (e.g., 1f v =3, 2 or 1,
there are 3.,(3) 2, or 3 ways, respectively, to
label columns)., However, these choilces will not affect
fanout-free realizability, since a unary operation
only is involved.

The synthesis algorithm i1s also a realizability

test, since the algorithm halts unsuccessfully when
no appropriate CDD's are found. In effect, the
algorithm proceeds from the-output to the inputs,
An alternative algorithm proceeds from the inputs to
the output, In particular, if a function £f(Z) is
fanout-free, it has at least one decomposition of
the form

£(z) = H(g(zi,zj), z - fzi,zj}) (6)
where H 1s fanout-free. Theorem 1 is again applicable
and it follows that the Z - fzizj]lzizj partition

matrix has y < m. It 1s then necessary to test H for
decompositions of the form (6). In terms of the
number of tests required, the latter algorithm has

the advantage., That is, there are (;) different par-
tition matrices to test initially where, for the
first algorithm, there are 2" '-n-1 partition matrices?t

However, as discussed later, there may be a
significant reduction in both cases.

1There are a total of 2" partition matrices, of which
2n + 2 are trivial (one or no variables in a row or
column). Thus, there are 2™-2n-2 nontrivial matrices.
However, it is necessary to test only one half of
these, because once a matrix is tested, there is no
need to consider its transpose.
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IV. Types of Gates Necessary
in a Fanout-Free Realization

In these synthesis algorithms, it is assumed that
all 2-input l-output gates are available. However,
specific functions can be eliminated without reducing
the set of realizable fanout-free functions. In
particular, let U = {u,(z)} be the set of all unmary
functions, and let R bé a relation between functions

fl and f2 which depend on exactly 2 variables, such

that f1 R f2 if and only if fl(zl’ZZ) = ui(fZ(uj(zl)’

-

uk(zz)) or fl(zl’ZZ) = ui(fz(uk(zz),uj(zl)) for

ui,uj,uk ¢ U. R 1s an equivalence relation and, as
such, induces a partition on the set of 2-variable
functions, Partitions of this nature for binary
circuits were studied by Slepian1 in his classic
paper and more recently by Allen™’ for multivalued
circuits., If all unary operations are available, then
only one representative of each euqivalence class is
required to realize all functions dependent on exactly
two variables, An approximate upper bound on the
number of representatives can be found as follows,

There are m" , mm, and m functions on 2 or fewer
variables, 1 or O variables, and O variables,

respectively. Thus there are gq(m) = m -2(mm-m)-m
functions on exactly two variables. An upper bound
on the number of representatives N(2,m) of 2-variable
m-valued functions can be found by dividing o(m) by
the number of elements in the smallest equivalence
class. As far as 1s known this has not been calcu-
lated. However, we propose the following:

Conjecture 1: The smallest equivalence class in the
partition induced by R on the set of two variable
functions contains f(zl,zz) where

|

|

| @
£(1,1) =
f(1,j) =0

for 0 <1,j £ m-1
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of 1's; all other entries are 0. It is believed
that £ 1s in the smallest equivalence class because
of the large number of permutations on values of

z. and z, which result in the same function. For

1 2

example, the function obtained from £ by an inter-
change of values of z., can also be obtained by an
interchange of values of 222. For the case where

|
|
1
[
!
i The z |z partition matrix of f contains a diagonal
1
|

m is 2 the smallest equivalence class contains two
members, the exclusive OR and equivalence function.
When m = 2 f(zl,zz) is the equivalence function,

A lower bound on the number of members of the

class containing f is(;) 2@?!) for m > 2, (;) is

the number of ways to make two choices from the
values available, Except for m = 2, there will be
more occurrences of one value than the other, and
thus there are two ways to choose the more abundant
one, Any permutation of values of z) or z, will

produce only m! different patterns. (2)2(m!) is a

lower bound since this count includes only unary

2The number of different arrangements obtained by all
possible permutations of values of z} and zp is just
the number of ways to place m nontaking rooks on an
m x m chessboard. This is m! (Liul8),

N
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functions u (zi) which are permutations of values

3

of zi(the unary function u(z) = 0, for example,

is not a permutation; it maps all values of z to 0),

Thus, an upper bound on the number of represen-
tatives of 2-variable m-valued functions N(2,m) is

2

m
m - 2m+m

e

Although this is a very loose upper bound, it does
show that a significant reduction in the number of
2-input gates needed can be achieved.

,m>2 )

V. Cascades of Multivalued Gates

A cascade is a fanout-free network which consists
of a single chain of gates. Figure 4 shows a cascade
of n 2-input l-output gates. The synthesis algor-
ithms for this case are an adaptation of those in the
previous section. For example, in the first algor-

I -
Y, —H G1 T G, Yoo o .y_J Gn —p 4
n-1

Figure 4, A Cascade of n Multivalued Gates

ithm only decompositions of the form
f(z) = (h(Z-zi), zi)

need be considered. Since there are only n 4+ 1 such
decompositions the computational effort is consider-
ably less that for general fanout-free networks.

A specilal case of the multivalued cascade exists
when m, the number of logic levels is an integral
power of 2, Ifm = 2%, the cascade is equivalent to
a cascade of binary gates with i outputs and 21 in-
puts. A number of authors have considered cascades
in which the number of binary lines between cells is
different than the number of lines associated with
the z inputs. This will be the assumption applied
here. In particular, assume the set of inputs in
Fig. 4 labeled z have r = 2% values while the y
inputs have s = 24 inputs. Such a network is called
a u-rail cascade. Fig. 5 shows this network. It
will be convenient later to assume that the number
of inputs applied to the leftmost gate from the left
is t (the same number each gate receives from above).
For the present, however, it is assumed that a = u,

t binary inputs

" A

—5 - — —
—H —& —5 —
. G - G - see . G M
: LI z | : n :

a binary inputs ﬁi\ u binary inputs

Figure 5. A u-rail Cascade.



VI. The Number of Functions Realized by Cascades

One measure of a particular network structure is
» number of switching functions realized. Such
basures indicate tradeoffs which can be made between
the range of functions realizable and the complexity
of the circuits. For example, intuition indicates
that if the number of lines between cells is reduced,
the set of functions realized at the output is also
reduced. From an information theoretic view, fewer
lines between gates means that less information about
remote inputs can be passed to the cascade output.
To put this in a more precise context, consider the
following.

A cascade of n 2-input l-output gates can be
decomposed into a single gate driven by a cascade of
n - 1 gates as shown in Fig. 6. The set of functionms

2 z
n-1 n

R

Yo Cascade oé n-1 Gates Gn Ya
Ya-1
Figure 6. Decomposition of a Cascade of n Gates.

realized at y, can be divided into s subsets, where
subset S?(s,r) consists of all functions which produce
exactly 1 of s logic values, for 1 <1 < s. Subset

’ “n(s,r), for example, consists of functions whose

{ tput is one value (regardless of the values at the

r

-

puts). Let Nj(n,s,r) be the number of functions
realized by a cascade of n gates, where Yo» Yiree

y_ take on s values and z.,Z,,..., and z_ take onr
1°72 n
values. Then,
8 n
Nl(n,s,r) =T ‘ Si(s,r) | (8)
i=1

Since all 2-input gates are available one choice
for Gn is a trivial one, producing one constant out-
put. Thus, the cascade produces all trivial functions

and
a -
| SI(s,r) | =35

The case where 1 > 1 can be treated by counting the
number of ways to form the znlyozlzz...zn_1 partition

matrix, M, of a cascade realizable function. As is
shown in Figure 7, this matrix has r rows and sr™”

columns.
veeZ

Y0*1%2° " **n-1
[T 11 =TT [ ] function realized
. - by N (sr“'1 en-
n . tries)
0 ——
1 - -
R I
[ T N ] [
L ———
r-1 [AI o

Figure 7. The znlyozlzz...zn_1 Partition
Matrix M.
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The entries in the matrix of a particular function
are determined by the function realized by N (plotted
along the row above the matrix) and by gate G,. If

N realizes a function with j logic levels, 2 < j <,
M has at most j distinct columns. If M has fewer
than j columns, the function realized by G treats two
or more logic levels at y,_] the saeme. That is, for
two logic levels a and b

Yo (8,2 = v (b2 ).

However, if N realizes f(yo,zl,zz,...,zn_l) it must
realize f(yo,zl,zz,...,zn_l) |&*b (£(¥,5215255004>
zn—l) |b+a)’ the function obtained from f(yo’zl’ZZ’
""zn-l) by replacing every occurrence of value b

by value a (a by value b). This follows froﬁ the
fact that the output gate of N can be any 2-variable
function. But the function at y, is unchanged if

N realizes f(yo,zl,zz,...,zn_l) |a+b (or

f(yo,zl,zz,...,zn_l) 'b*a) instead of f(yo,zl,zz,...,
z ). Thus, certain functions at y, can be realized

if more than one way. To avoid double counting, only
the contributions of f(yo,zl,zz,...,zn_l) in which

values produce exactly j distinct columns in M
will be counted.

Let C4(j,s,r) be the number of functions
realized by a cascade of n gates which produces
exactly i levels in which M has ] columns. The sum-
mation ranges only to s because the number of columns

S
|S:(S)r)|=2 Ci(jss)r)
j=1

(9

i in M cannot exceed the number of logic levels ap-
pearing at Yao1°

If N realizes a j level function, f(yO’zl’ZZ""’
zn-l)’ then it also realizes all functions obtained

from it-by an interchange‘of logic levels. This
follows from the fact the Gn—l can be replaced by a

gate realizing the same function as Gn_1 except for

an interchange of logic values. There are a total

of (;) B
the set of the functions produced at y, 1s the same

for any of the (j)jl choices. Thus,

such functions including f itself. However,

n-1
c,(j,s,r) = -1
ST

where D(1,j) is the number of ways to assign i logic
levels to partition matrix M such that all j columns

D(1,]), (10)

are distinct. There are (:) ways to choose 1 logic

T
levels, Given this choice there are (i )jl ways to

form ] distinct columns of r entries with i or fewer

(i'l)r 1
values. There are ( 3 )j! ways to form j distinct

columns with i-1 or fewer values, etc. Applying_the
principle of inclusion/exclusion (pp. 96-106 Liul8)
yields : :
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et = ([ - @) (452 )

((igz)r)j! - e+ (D (3)5!;

or
s = (D 5 o0 (49

from (9), (10), and (11) we obtain,

. s lSn l(s,r)| . i-1 K /1 (1-k) values were calculated by a computer program from
|Si(s,r)| =z —*J——:r———— (i r (-1) (,) ( 2) (8), (12), and (13). The case where s = 2 and r = 2
j=1 (j> k=0 J 3 corresponds to the cascade of 2-input l-output
binary cells, and thus the values in Tabel I ggree,
“~ as they must, with those calculated by Maitra~. It
"y .r’} ﬁ (12) is interesting to note that even small networks
fl oA f‘) ; ) realize a large number of functionms,
v ; L A0
Citj:) = A<6o’ g (,LT:D
e Y §
: n N(n,s=2,r=2 N(n,s8=3,r=2) N(n,s=4,£;§3 e
w_— 1 7716 s~ 129 65,536
2 88 /" 47,601 | 77,575,936
3 N\ / 520 _ 3,450,897 | 103,901,883,136
4 ¥/ 3,112 /252,034,065 | 1.39823 x 1014
5 ﬂl 18,664 /18,416,334,609 1.88194 x 10l7
6 111,976 £1.34574 x 1012 2.53302 x 1020
7 p 671,848 9.83380 x 1013 °3.40934 x 1023
8 /4,031,080 7.18590 x 101 4.58884 x 1020
n N(n,s=2,r=3 N(n,s=3,r=3) N(n,s=4,r=3)
1 -”"E%_F' 19,683 16,777,216
2 ’,\,ﬁ/-rﬁ,f 1,744 53,267,787 9.34643 x 1012
3 [~‘ (K 48,784 147,125,769,363 5.29473 x 1018
4 S — 1,365,904 4.06430 x 1014 2.99961 x 1024
‘ . 5% \ 38,245,264 1.12275 x 1018 1.69936 x 1030
L,//’//’ 6 “—<1,070,867,344 3.10156 x 1021 9.62737 x 1033
" 7 /" 29,984,285,584 8.56795 x 1024 5.45418 x 1041
A\ /-sz) 8 /" 839,559,996,304 2.36687 x 1028 3,08994 x 1047
L ;
n N(n,s=2,r=4) N(n,s=3,r=4) N(n,s=4,r=4)
1 256 531,441 4,294,967,296
2 30,496 44,307,654,561 7.20819 x 101
3 3,659,296 3.70673 x 1013 . 1.21222 x 1026
4 439,115,296 3.10103 x 1020 - 2.03862 x 1034
5 52,693,835,296 2.59430 x 1023 . 3.42840 x 1042
6 6.32326 x 1012 2.17037 x 1030 5.76562 x 1020
7 7.58791 x 1014 1.81572 x 1033 9.69619 x 1098
8 9.10549 x 1018 1.51902 x 1040 1.63063 x 1097
Table I. The Number of Functions N(n,s,r) Realized
by a Cascade of n Gates Where yo,yl,...,y
n
Take on s Values and zl,zz,...,z Take on
n
r Values
¢ i
| | A
{ ‘_“‘_ i [ | R ¢ { J“'{' } G _:l ire! { J'f ( v
- —
43

(12) 1s a recurrence relation in which values of
lSI(s,r)l are expressed as a function of lower order

values. The initial conditions are determined by
the number of functions realized by the leftmost cell
of the cascade. These are

|Si(s,r)| - (:) kzg -k (t) (1-0)°%. (13

Table I shows the number of functions N(n,s,r) rea-
lized by a cascade of n gates where r is the number
of logic levels for the z inputs and s is the
number of logic levels for the y inputs. These



The equations derfved can be modified easily to
yield the number of functions Nj(nm, 21 2t) realized
by each output of a u-rail cascade. Let

f 2,...,f denote these functions. Because of

bxmetry, the range of functions at each output is the
game as any other. Furthermore, the range of func-
tions at any output is as large as the range obtained
from any switching function on fl,fz,...,fu. That is,

a function obtained by forming q = F(fl,f ,...,fu) is

2

also realized by any output f since gate GN can

i’
realize any function on its input variables. The
number of functions at any output is then just the

number of functions at y, which produce two distinct

values (say O and 1). This 1is
|Sn(s r)| t
u Lt P2 =2 .
N,(n,27,27) = _—_zgi_—_ |E=2u . (14)
2
: 1
n Nz(n,s=2 r—2 )
1 14
] - 86
3 (’ ,,- 7 518
4, /3,110
5 ’) ./ 18,662
. 6 - ¥ 111,974 '
kJ//) 7 7/ 67,846
8 ' f

4,031,078
J oo |
N (n,s= l__

(r 1 P 254

F\ )0 . 65,534
| » 77,575,934

‘1;/ 103 901,883,134

-3987% % 1014

1.88194 x 1017

2.53302 x 1020

SNOM#(ANP—‘:’

N (n,s= 23,r 27)

14

254

65,534

4,294,967,294
1.31700 x 1018
2.09836 x 1027
3.41827 x 1036
5.56954 x 1042

OV WNED

Tabel II.

To determine how the number of binary functions rea-
lized by a u-rall cascade varies with u, it will be
assumed that for the initial gate, G;, of Fig. 5,

a = t, Thus, changing the number of rails will not
change the number of network inputs. In this way,
we have a basis of comparison for determining how
the number of rails affects the number of functions
realized.

To account for the change, a new initial cond -

tion must be calculated. In particular, the number

of multivalued functions realized by gate G1 1s now

s, 0 =(i)k§5 n* () w0t s)

Table II shows Nj(nm, 2u Zt) for various values of s and

r. Note that Np(n,2Y 2t) does not include the two
trivial functions q = 0 and q = "1. 1t can be seen
that the addition of one rail can substantially in-
N (n s= 21 r= 2 ) Nz(n,s=21,r=23)
65 534 1.84467 x 1019
7,864,094 6.02102 x 1023
943,691,294 1.96526 x 1028
113,242,955,294 6.41461 x 1032
1.35892 x 1013 2.09373 x 1037
1.63070 x 1015 6.83393 x 1041
1.95684 x 1017 2.23059 x 1046
2.34821 x 1019 7.28067 x 1030
N, (n,s= 2% r=2%) N2(n,s=22, r=22)
65,534 1.84467 x 1019
7.52818 x 10}2 5.94789 x 1046
1.26584 x 1021 4.56938 x 1064
2.12879 x 1029 3.51036 x 1082
3.58004 x 1037 2.69678 x 10190
6.02065 x 10%° 2.07177 x 10118
1.01251 x 1054 1.59160 x 10136
1.70276 x 1093 1.22273 x 10154
N (n,s=2 r-22)
65,534
1.31700 x 1018
1.96049 x 1042
3.41208 x 1066
5.93846 x 1070
1.03354 x 10115
1.79880 x 10139
3.13068 x 10163

The Number of Nontrivial Functions Nz(n,s=2u,r=2t)

Realized at a Single Output of a u-Rail Cascade
where n is the Number of Gates, u is the Number of
Inputs From the Left, and t is the Number of Inputs

From Above,




1 “1 %2 % %2 3
! —> 9 —> 9
Yo =8 & - €, Vo8 6 ) )
n=1 n=2 n=3
Figure 8. Three Cascades Realizing All Functiouns

on Their Input Variables.

crease the number of functions realized. For example,
consider a network of 4 gates where each gate receives
one network input except the leftmost gate which
receives two inputs. This network has a total of 5
inputs. For 1, 2 and 3 rails the cascade realizes
3,110, 77,575,934 and 4,294,967,294 nontrivial func-
tions, respectively. Thus, the addition of just one
rail substantially increases the number of functionms
which can be realized.

VII. Concluding Remarks

Because a search is required in the synthesis
algorithms described, computational effort can be
substantial for even a moderate number of inputs.

‘It is reasonable to ask whether a reduction is pos-
sible. One way to reduce the computation effort may
be to restrict gates to a proger subset of equivalence
class representatives. Hayes® showed that in the
binary case, 1f exclusive OR's are not used, an easily
applied test for fanout-free realizations is possible.
This may be true of multivalued gates, as well,

A reduction in computational effort appears to
be possible even when no restriction is placed on
the gate set. In particular,

Conjecture 2: If £(Z) has two CDD's
£(z) = Hl(gl(x),gz(Y)) (16)
£(z) = Hy(g5(W),8,(2)) (17)

then g, and g, are fanout-free if and only 1if 83 and
g, are fanout-free,

If the conjecture is true, then there is no need to
develop all CDD's of £(Z); the first one found is
sufficient. A first step in the proof might be to
show that (16) and (17) implies f(Z) also has the
decomposition

£(2) = G(h (X N W),h, (X N 2),h, (Y N W),h, (Y N 2)),

a likely possibility in view of a closely related
result for binary functions (Theorem 4.4, Curtis 3).

With respect to the second synthesis algorithm,
a reduction in computational effort is possible if
the following 1s true
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Conjecture 3: If £(Z) has the decomposition

£2) = B (8) (x;,%)), Z = [xg,x,]) (18)

3

f(z) = Hz(gz(xk)xl,): zZ - r)ﬁ(’xl,}) (19)
then H) 1s fanout-out free if and only 1if Hp is
fanout-free.

If true, then the search for partitions of f(Z)
of the form (18) and (19) ends with the discovery of
the first one.

With respect to the multi-rail cascade, Table II
shows an interesting result, The data for

N (n,s=22,r=21) indicate that each output of the three

cascades in Figure 8 realize all nontrivial functions
on the input variables., For n 1, this is not sur-
prising since Gj can be any gate. For n 2, since
Gy can produce at both outputs all functions on its
input variables, and since the two outputs of Gy can
produce Yo and z; at its outputs, all functions on

On

Yor 21 and'z2 can appear at the output of GZ'
for the three gate case and analogous
produces all functions!

ave the Shannon

the other hand,
situation does not exist,yet G
This is because all functions

decomposition

ay = %3 fylyp,2),2,) + 253 £ (v ,2,,2,) (20)
Since all pairs of functions on Yg221» and z, can be
realized at the output of Gz,fo and f1 of (20) can

be specified as any desired function and thus q

can be any function on YgsZ11295 and zg- However,

not all pairs of functions can be produced at the
outputs of G3. Thus, the inputs to gate Gz, 1f it
exlsts, are not sufficient to cause the four gate
network to produce all functions on its inputs. A
similar situation exists for other values of u and t,
for example, for u = 3 and t 1.
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