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The last member known to the writer is that one given by n =8, LP = 48, and
p =9999999900000001 , or

p=28-58+32-11-73-101-137+1.
M @OE @ @ i

It will be observed that, for Family IV, n is equal to the number of 9’s in the
prime number; moreover, that the largest period length of any of the factors of
(p - 1) is also equal to the number of 9’s. Observe, too, that 1 is the exponent of
2 in the factored form of (p = 1). The other factors have LP which are factors

of n.

Yates [3] has made a special study of Family IV and has shown the number
to be composite for n =10.

There are, of course, many other “Golden” primes having LR << 1, but
probably are not representable by such simple algebraic expressions as those
generating Families I-IV. Probably neither do these others have such simple |
digital structure, ‘

The above discussed relationships causes one to speculate as to the possibility
of there being some sort of functional relationship between the digital structure
of a prime number (its “anatomy”) and the length, LP, of the period of its
reciprocal; in fact, the writer has some evidence of this from the digital structure
of other “Golden” primes. .
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ABC Puzzles — Puzzle B

Each of three boxes contain two coins. One contains two dimes, another two
nickels, and the third a dime and a nickel. The boxes are marked 10 cents, 15
cents, and 20 cents, but none contain the amount marked on it. Without looking
in the boxes, you may draw out one coin at a time.

What is the fewest number of coins you must draw to determine the contents
of each box?

Maxey Brooke, Sweeny Texas
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A GENERALIZATION OF THE GOLDEN RATIO
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Introduction

+b .
If two positive numbers a and & satisfy the equation § = 25-— it follows that

2
(9> (é) -1 =0 and hence Zl:‘ - 1;\/3 - 1.6180339989 ... This

a a

irrational number, usually denoted by the Greek letter phi (¢), has so fascinated
mathematicians since even before the time of Euclid (¢.300 B.C.) that it has
come to be called the golden ratio. One of its best-known properties involves
the Fibonacci sequence {F" }, defined by F1 = F2 =1,and

n+1

Fo. =F +Fn(n > 1); namely, 7

n

- ¢ as n = oo, a result which readily

follows from the so-called Binet formula
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Perhaps not so well-known is the fact that the more general sequence {a, } ,

are both arbitrary positive integersanda, ., = 4, * anv(n = 1),

where a.4a,

an+l

also has the property

- ¢ as n — ==, For example, Table 1 shows this
a
n a
convergence for the case where g, =26 and a, = 17; the values of
accurate to 6 decimal places. n

ntl

are

The Generalized Golden Ratio

The main purpose of this paper is to consider the still more general sequence
{an} defined by a, =a,4a, = b, and
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a =ra

ne2 ey 52, nzl, )

where g, b, r, s are all arbitrary positive integers. Putting

a,=pa’ +qp" 3)
(see [2]), it follows that

a, ., = (at [3)(1,”1 - afa,,

whence comparison with (2) yields a + = r and of =-s. Thus «, § are roots of

Jr2
the equation x> - rx - s=0;ie. a,f = L;Jr—‘“ Moreover, the
equatjons
a, =pa+qB=a
a, =p012 +qﬁ2=b
. b -ap aax-b
jeld p = ——— and ¢ = -——— . Therefore (3) give
TR ) R CRO) re (3)gives
_[(b-aB . b-aa 1
an—(a_6>a" —(a_6>6”,n>l, 4)
as the generalization of Binet’s formula (1); Binet’s formula of course results
from taking ¢ =b=r=s=1,in which case @, = l;\[s ,atf=1and
ax-f= \/3
Table 1.
B In+1
n an an
1 26 0.653846
2 17 2529412
3 43 1.395349
4 60 1.716667
5 103 1.582524
6 163 1.631902
7 266 1.612782
8 429 1.620047
9 695 1.617266
10 1124 1.618327
11 1819 1.617922

12

2943

1.618077

a
n+l

D
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J2
Note also that a = r’r—zrﬂ is the generalized golden ratio, since
b-af n _ (b-ax\y op .
an+1_(a~6)a (cz—{i){3 <
- ~
a, (b—aﬁ Q- b-aa)ﬁ,,_,
- B o~ B

«5 (5755) (o
(e (@)

since -1 < % < 0. Clearly « depends on r and s, but not on a and b.

As an illustration of the above theory, Table 2 shows the early behavior of

(evaluated to 6 decimal places) for two different sequences, both however
n

satisfying r =3 and s=2. For the first sequence a = 4 and b =7, while the
second sequence has @ = 6 and b =5. Of course, in each case the limit

= 3+_2 V17 _ 3561552813 . ..

Table 2.
4+ Znt1
n an an an an
1 4 1.750000 6 0.833333
2 7 4.142857 5 5.400000
3 29 3.482759 27 3.370370
4 101 3.5674257 91 3.593407
5 361 3.5659557 327 3.556575
6 1285 3.561868 1163 3.5662339
7 4577 3.5661503 4143 3.561429
8 16301 3.561561 14755 3.561572
9 58057 3.561552 52551 3.561550
10 206773 3.561553 187163 3.561553
11 736433 3.561553 666591 3.5661553
12 2622845 3.561553 2374099 3.5661553
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Particular Cases

The above results generalize the work of several earlier papers. For example,
taking @ = b =r =1, 5 arbitrary, we obtain :

(b))

= 2 nzl,

a 2
n Vas+ 1

_L+/4sH

and « 3

, and several properties of this particular sequence appear

in [1]. On the other hand Guest [2] considered the case 2 =p, b=p+t1

(p arbitrary), 7 = s = 1, and Horadam [3] the slightly more general case

a=p, b=p+4q(p,qbotharbitrary),r =s =1. In [3] the formula corresponding
to (4) appears (in my notation) as

- (la™ - mp™), n =1,

a
SN

1+/5

5 . This

where 1 = 2(p - gB), m = 2(p - ga) and of course @, f =
follows from (4) after some manipulation.

Integral Values of «

An interesting question concerns the possibility of the generalized golden
ratio being integral. Taking «=n say, where nis an arbitrary positive integer,

it follows that \/rZ +4s = 2n-r,r2 +4s=4n* - 4nr + r*, and hence

s=n(n- r). Since r, s are both positive, r can thus take only the values 1, 2,
~_.m- 1. In other words, for each positive integer n there are exactly
n- 1 combinations of r and s which yield a=n.

As a final example, suppose we seek a generalized Fibonacci sequence for
which a=4. In this case the equation s = 4(4 - r) yields the 3 combinations

r=1,5=12; r=2,s=8;, r=3,5=4. Asan illustration, Table 3 shows the
. an+]
early behavior of s (evaluated to 6 decimal places) for the sequence with
n

a=5,b=2,r=3 and s=4.
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Tabtle 3.

041

L
n N on

3
Y

1 5 0.400000
2 2 13.000000
3 26 3.307692
4 86 4,209302
5 362 3.950276
6 1430 4.012587
7 5738 3.996863
8 22934 4.000785
9 91754 3.999804
10 366998 4.000049
1 1468010 3.999988
12 5872022 4.000003
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