Initial Happy Factorization Data -------------------------------- t : A007968 x : A007966 y : A007967 t=1 : v : A191860 t=2 : v : A191862 t=1 : w : A191861 t=2 : w : A191863 x * y = n x*v^2 + t = y*w^2 n t x y v w ------------------------------- 0 (0,0,0,0,0) 1 (0,1,1,1,1) 2 (1,1,2,1,1) 3 (2,1,3,1,1) 4 (0,2,2,2,2) 5 (1,1,5,2,1) 6 (1,2,3,1,1) 7 (2,7,1,1,3) 8 (2,2,4,1,1) 9 (0,3,3,3,3) 10 (1,1,10,3,1) 11 (2,1,11,3,1) 12 (1,3,4,1,1) 13 (1,1,13,18,5) 14 (1,7,2,1,2) 15 (2,3,5,1,1) 16 (0,4,4,4,4) 17 (1,1,17,4,1) 18 (1,2,9,2,1) 19 (2,1,19,13,3) 20 (1,4,5,1,1) 21 (1,3,7,3,2) 22 (1,2,11,7,3) 23 (2,23,1,1,5) 24 (2,4,6,1,1) 25 (0,5,5,5,5) 26 (1,1,26,5,1) 27 (2,1,27,5,1) 28 (1,7,4,3,4) 29 (1,1,29,70,13) 30 (1,5,6,1,1) 31 (2,31,1,7,39) 32 (2,16,2,1,3) 33 (1,11,3,1,2) 34 (1,17,2,1,3) 35 (2,5,7,1,1) 36 (0,6,6,6,6) 37 (1,1,37,6,1) 38 (1,2,19,3,1) 39 (1,3,13,2,1) 40 (2,2,20,3,1) 41 (1,1,41,32,5) 42 (1,6,7,1,1) 43 (2,1,43,59,9) 44 (1,11,4,3,5) 45 (1,5,9,4,3) 46 (1,23,2,23,78) 47 (2,47,1,1,7) 48 (2,6,8,1,1) 49 (0,7,7,7,7) 50 (1,1,50,7,1) 51 (2,1,51,7,1) 52 (1,4,13,9,5) 53 (1,1,53,182,25) 54 (1,2,27,11,3) 55 (1,11,5,2,3) 56 (1,7,8,1,1) 57 (1,3,19,5,2) 58 (1,1,58,99,13) 59 (2,1,59,23,3) 60 (1,15,4,1,2) 61 (1,1,61,29718,3805) 62 (1,31,2,1,4) 63 (2,7,9,1,1) 64 (0,8,8,8,8) 65 (1,1,65,8,1) 66 (1,2,33,4,1) 67 (2,1,67,221,27) 68 (1,4,17,2,1) 69 (1,23,3,13,36) 70 (1,5,14,5,3) 71 (2,71,1,7,59) 72 (1,8,9,1,1) 73 (1,1,73,1068,125) 74 (1,1,74,43,5) 75 (2,25,3,1,3) 76 (1,19,4,39,85) 77 (1,7,11,5,4) 78 (1,26,3,1,3) 79 (2,79,1,1,9) 80 (2,8,10,1,1) 81 (0,9,9,9,9) 82 (1,1,82,9,1) 83 (2,1,83,9,1) 84 (1,3,28,3,1) 85 (1,1,85,378,41) 86 (1,2,43,51,11) 87 (2,3,29,3,1) 88 (2,4,22,7,3) 89 (1,1,89,500,53) 90 (1,9,10,1,1) 91 (2,13,7,11,15) 92 (1,23,4,5,12) 93 (1,3,31,45,14) 94 (1,47,2,151,732) 95 (1,19,5,1,2) 96 (2,48,2,1,5) 97 (1,1,97,5604,569) 98 (1,49,2,1,5) 99 (2,9,11,1,1) 100 (0,10,10,10,10) 101 (1,1,101,10,1) 102 (1,2,51,5,1) 103 (2,103,1,47,477) 104 (2,2,52,5,1) 105 (1,5,21,2,1) 106 (1,1,106,4005,389) 107 (2,1,107,31,3) 108 (1,27,4,5,13) 109 (1,1,109,8890182,851525) 110 (1,10,11,1,1) 111 (1,3,37,7,2) 112 (1,7,16,3,2) 113 (1,1,113,776,73) 114 (1,2,57,16,3) 115 (2,5,23,15,7) 116 (1,4,29,35,13) 117 (1,9,13,6,5) 118 (1,2,59,277,51) 119 (2,119,1,1,11) 120 (2,10,12,1,1) 121 (0,11,11,11,11) 122 (1,1,122,11,1) 123 (2,1,123,11,1) 124 (1,31,4,273,760) 125 (1,1,125,682,61) 126 (1,14,9,4,5) 127 (2,127,1,193,2175) 128 (2,64,2,3,17) 129 (1,3,43,53,14) 130 (1,1,130,57,5) 131 (2,1,131,103,9) 132 (1,11,12,1,1) 133 (1,19,7,261,430) 134 (1,2,67,191,33) 135 (2,27,5,3,7) 136 (2,34,4,1,3) 137 (1,1,137,1744,149) 138 (1,23,6,1,2) 139 (2,1,139,8807,747) 140 (1,35,4,1,3) 141 (1,47,3,1,4) 142 (1,71,2,1,6) 143 (2,11,13,1,1) 144 (0,12,12,12,12) 145 (1,1,145,12,1) 146 (1,2,73,6,1) 147 (1,3,49,4,1) 148 (1,4,37,3,1) 149 (1,1,149,113582,9305) 150 (1,6,25,2,1) 151 (2,151,1,3383,41571) 152 (2,4,38,3,1) 153 (1,17,9,8,11) 154 (1,7,22,39,22) 155 (1,31,5,2,5) 156 (1,12,13,1,1) 157 (1,1,157,4832118,385645) 158 (1,79,2,7,44) 159 (2,3,53,21,5) 160 (2,80,2,3,19) 161 (1,7,23,29,16) 162 (1,2,81,70,11) 163 (2,1,163,8005,627) 164 (1,4,41,16,5) 165 (1,11,15,7,6) 166 (1,2,83,20621,3201) 167 (2,167,1,1,13) 168 (2,12,14,1,1) 169 (0,13,13,13,13) 170 (1,1,170,13,1) 171 (2,1,171,13,1) 172 (1,43,4,531,1741) 173 (1,1,173,1118,85) 174 (1,29,6,5,11) 175 (2,7,25,17,9) 176 (2,22,8,3,5) 177 (1,59,3,23,102) 178 (1,2,89,20,3) 179 (2,1,179,2047,153) 180 (1,20,9,2,3) 181 (1,1,181,1111225770,82596761) 182 (1,13,14,1,1) 183 (1,3,61,9,2) 184 (1,23,8,23,39) 185 (1,1,185,68,5) 186 (1,6,31,25,11) 187 (2,1,187,41,3) 188 (1,47,4,7,24) 189 (1,27,7,1,2) 190 (1,10,19,51,37) 191 (2,191,1,217,2999) 192 (2,96,2,1,7) 193 (1,1,193,1764132,126985) 194 (1,97,2,1,7) 195 (2,13,15,1,1) 196 (0,14,14,14,14) 197 (1,1,197,14,1) 198 (1,2,99,7,1) 199 (2,199,1,9041,127539) 200 (2,2,100,7,1) 201 (1,3,67,293,62) 202 (1,1,202,3141,221) 203 (1,7,29,2,1) 204 (1,51,4,7,25) 205 (1,41,5,22,63) 206 (1,103,2,17,122) 207 (1,23,9,5,8) 208 (2,8,26,9,5) 209 (1,19,11,35,46) 210 (1,14,15,1,1) 211 (2,1,211,527593,36321) 212 (1,4,53,91,25) 213 (1,71,3,37,180) 214 (1,2,107,416941,57003) 215 (2,43,5,1,3) 216 (2,4,54,11,3) 217 (1,31,7,249,524) 218 (1,1,218,251,17) 219 (2,73,3,1,5) 220 (1,44,5,1,3) 221 (1,13,17,8,7) 222 (1,74,3,1,5) 223 (2,223,1,1,15) 224 (2,14,16,1,1) 225 (0,15,15,15,15) 226 (1,1,226,15,1) 227 (2,1,227,15,1) 228 (1,3,76,5,1) 229 (1,1,229,1710,113) 230 (1,5,46,3,1) 231 (2,3,77,5,1) 232 (2,2,116,99,13) 233 (1,1,233,23156,1517) 234 (1,26,9,10,17) 235 (2,5,47,3,1) 236 (1,59,4,69,265) 237 (1,3,79,195,38) 238 (1,119,2,7,54) 239 (2,239,1,161,2489) 240 (1,15,16,1,1) 241 (1,1,241,71011068,4574225) 242 (1,2,121,70,9) 243 (2,1,243,265,17) 244 (1,4,61,14859,3805) 245 (1,5,49,72,23) 246 (1,2,123,149,19) 247 (2,19,13,67,81) 248 (1,31,8,1,2) 249 (1,83,3,227,1194) 250 (1,1,250,4443,281) ------------------------------- Reinhard Zumkeller, Jun 18 2011 reinhard.zumkeller@gmail.com
Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.
Alternative Proxies: