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Abstract

Conway’s product of 2-happy number couples, A007970, are proved to coincide with the values

d of the Pell equation x2 − d y2 = +1 for which the positive fundamental solution (x0, y0) has odd

y0. Together with the proof that the products of the 1-happy number couples, A007969, coincide

with the d values which have even positive fundamental solution y0, found as a W. Lang link in

A007969, this is Conway’s theorem on a tripartition of the positive integers including the square

numbers A000290.

Conway [1] proposed three sequences, obtained from three types of sequences of couples called
0-happy couples (A,A), 1-happy couples (B,C) and 2-happy couples (D,E). By taking products of
each couple one obtains three sequences that are given in OEIS [3] A000290 (the squares), A007969 and
A007970, respectively. It is stated as a theorem, with the proof left to the reader, that each positive
integer appears in exactly one of these three sequences. Here we consider the numbers d = D E coming
from the 2-happy couples. These numbers are defined if the following indefinite binary quadratic form is
soluble with positive integers D and E, and odd integers T and U which can be taken positive.

E U2 − D T 2 = +2 . (1)

The discriminant of this quadratic form is Disc = 4E D = 4 d > 0. Hence this is an indefinite
quadratic form leading to an infinitude of solutions (U, T ) if there is any, for given D and E. It is
clear that E and D are either both odd or both even. This will define two cases called later i) and ii).
No square number d will appear because if E = n2 r and D = m2 s with square-free r = s, one has
r (n U − m T ) (n U + m T ) = 2, hence two possibilities r = 1 or r = 2. In the first case the two
remaining factors lead to 2n U = 3 which is contradictory. In the second case the remaining two factors
lead to n U = 1 and m T = 0, i.e., m = 0, but D cannot vanish because D has to be positive.

The connection to the Pell equation
x2 − d y2 = +1 (2)

with odd y = 2Y + 1 and positive (proper) solution (x0, y0) for certain d, not a square number, will be
established for the rewritten equation

x2
0 − 8 dTr(Y0) = d + 1, (3)

with the triangular numbers Tr = A000217. It is useful to distinguish two cases i): x0 even and ii): x0

odd. (They will later be seen to correspond to the cases D and E odd and even, respectively.)

Case i): For x0 = 2X0 eq. (3) becomes 4X2
0 − 8 dTr(Y0) = d + 1, showing that necessarily d ≡

−1 (mod 4) ≡ 3 (mod 4). This can be rewritten as

dY0 (Y0 + 1) = X2
0 −

d + 1

4
. (4)
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Or as
(2X0 + 1) (2X0 − 1) = d (2Y0 + 1)2 . (5)

Case ii): For odd x0 = 2X0 + 1, eq. (3) becomes 8 (Tr(X0) − dTr(Y0)) = d, showing that necessarily
d ≡ 0 (mod 8). This can be rewritten as

4 dY0 (Y0 + 1) = 4X0 (X0 + 1) − d . (6)

Or as
4X0 (X0 + 1) = d (2Y0 + 1)2 . (7)

Because of the different parity of d for the two cases it is clear that cases i) and ii) will later belong to
odd and even D and E, respectively.

We first show that for positive integers D and E allowing integer solutions of eq. (1) with odd U and
odd T the eqs. (5) and (7) can be derived for d := D E and x0 = E U2

0 − 1 and y0 = U0 T0, where U0

and T0 are the minimal positive odd solutions. Later the converse is proved.

Proposition 1: From (U0, T0) to (x0, y0)

Let U0 and T0 be the minimal positive odd solutions of eq. (1) for certain positive values of D and E.
Then one has with d = D E eq. (2) with x = x0 = E U2

0 − 1 and y = y0 := U0 T0, where (x0, y0) is
the fundamental positive (proper) solution for d. Necessarily, d ≡ 3 (mod 4) or 0 (mod 8) for odd or even
D and E, respectively.

Proof: Case i). The l.h.s. (left-hand side) of eq. (4) multiplied by 4 becomes with 2Y0 = U0 T0 − 1

D E (U0 T0 − 1) (U0 T0 + 1) = D E ((U0 T0)
2 − 1) . (8)

The r.h.s. (rigth-hand side) multiplied by 4 becomes with 2X0 = x0 = E U2
0 − 1

((E U2
0 − 1)2 − 1) − D E = E U2

0 (E U2
0 − 2) − D E . (9)

Therefore, after cancellation of the d = D E terms on both sides and division by E U2
0 , this reduces to

eq. (1)
D T 2

0 = E U2
0 − 2 . (10)

Going these steps backwards proves the proposition for case i), after observing that a minimal solution
(U0, T0) of eq. (1) implies that the defined (x0, y0) are also minimal, i.e., the positive fundamental
solution of eq. (2) for odd y. Any solution is of course proper, meaning gcd(x0, y0) = 1.

In case ii) the l.h.s. of eq. (6) is the same as the one for eq. (4) and becomes with 2Y0 = U0 T0 − 1
again

D E ((U0 T0)
2 − 1) . (11)

The r.h.s. becomes with 2X0 = x0 − 1 = E U2
0 − 2,

(E U2
0 − 2)E U2

0 − D E . (12)

After cancellation of d = D E on both sides and division by E U2
0 this reduces also to eq. (10), i.e.,

eq. (1). Going these steps backwards proves the proposition for case ii), observing again that a minimal
solution (U0, T0) of eq. (1) implies fundamental positive (x0, y0) of eq. (2).

The congruence for odd and even d is clear from the remarks before eqs. (4) and (6).
The converse statement will be a bit more difficult to prove.

Proposition 2: From d, x0, y0 to D, E, U0, T0

Let (x0, y0) be the positive fundamental solution of eq. (2) for those positive non-square integers d with

odd y0. Then there will be a positive solution (U0, T0) of eq. (1) with E = gcd(x0 + 1, d), D =
d

E
, and
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U0 = gcd(x0 + 1, y0), T0 =
y0

U0
. D and E are both odd if d is odd (in fact ≡ 3 (mod 4)), and they are

both even if d is even (in fact ≡ 0 (mod 4)). The solutions U0, T0 are the minimal positive ones.

Proof: One uses the basic result that the Pell eq. (2) has a fundamental positive solution (x0, y0) for
each non-square positive integer d (see e.g.,Nagell [2], Theorem 104, pp. 197-198). Here all such d values
with odd y0 are considered.

For the later discussion it is useful to observe the scaling freedom in the definition of E, D, U0, T0.

Instead of fixed values one can replace them by E(n) =
E

n
, D(n) = n D U0(m) =

U0

m
, T0(m) = m T

with arbitrary positive integers n and m. This is because d = E D and y0 = U0 T0 are invariant under
this transformation. Later the values for n and m will be fixed appropriately.

Case i) x0 = 2X0, y0 = 2Y0 + 1. E = gcd(2X0 + 1, d), D = d/E, and U0 = gcd(2X0 + 1, 2Y0 + 1),
T0 = y0/U0. Because d is odd (≡ 3 (mod 4)) E and D are odd. Note that gcd(2X0 − 1, 2X0 + 1) = 1.
By definition, E as well as U0 divides 2X0 + 1, Therefore E and U0 cannot divide 2X0 − 1. Because
the r.h.s. of eq. (5) is d y0 = E D (U0 T0)

2 the factor 2X0 + 1 of the l.h.s. is divisible by E U2
0 .

Thus, 2X0 + 1 = E U2
0 a, with some positive integer a, and then 2X0 − 1 =

D T 2
0

a
. Now we use

the scaling freedom to replace E, D, U0 and T0 by their n and m dependent counterparts: 2X0 + 1 =

E(n)U2
0 (m) a =

a

n m2
E U2

0 , and 2X0 − 1 =
D(n)T 2

0 (m)

a
=

n m2

a
D T 2

0 . The choice is n m2 = a, i.e.,

n = n(a) = sqfp(a) and m = m(a) =
√

a

n(a) , where sqfp(a) is the square-free part of a (see A007913),

and m(a) = A000188(a). After this choice we finally obtain

2X0 + 1 = E U2
0 , and 2X0 − 1 = D T 2

0 , (13)

which leads to eq. (1): E U2
0 = (2X0 − 1) + 2 = D T 2

0 + 2.

Case ii) x0 = 2X0 + 1. Here d ≡ 0 (mod 8), and eq. (7) is X0 (X0 + 1) = d

4 y2
0 .

E = gcd(2 (X0 + 1), d) = 2 gcd

(

(X0 + 1),
d

2

)

and D =
d

E
. Thus D and E are even. U0 =

gcd(2 (X0 + 1), y0) and T0 =
y0

U0
. Note that gcd(X0, X0 + 1) = 1. Therefore, because by definition E

2

and U0 (which is odd) divide X0 + 1, and they do not divide X0, we have X0 + 1 = E

2 U2
0 b with some

positive integer b. Using again the scaling freedom by taking E(n), D(n), U0(m) and T0(m) instead of

the fixed quantities we have X0 + 1 =
E(n)

2
U2

0 (m) b =
b

n m2

E

2
U2

0 . Now we choose n m2 = b, i.e.,

n = n(b) = A007913(b) and m = m(a) = A000188(ab). This leads to 2 (X0 + 1) = E U2
0 and then

from eq. (7) to 2X0 = D T 2
0 which is again eq. (1) after elimination of 2X0.

In both cases the positive fundamental (minimal) solutions (x0, y0) of eq,. (2) with odd y0 lead to minimal
positive solutions (U0, T0) of eq. (1), as is clear from their definitions.

Remarks:

1) Contrary to the case of the solutions of the Pell equation (1) with even y0, in the present case with
odd y0 not all solutions have odd y. The parity alternates for the solutions derived from the fundamental
solution. This is clear from the general formula (see e.g.,Nagell [2], Theorem 104, pp. 197-198, eq. (8)
for yn).

2) From the proof of the equivalence of the solutions (x0, y0) of eq. (2) with odd y0 and non-square
integer d = E D and (U0, T0) of eq. (1) there can be only one class of solutions also for eq. (1). This
follows from the known fact that the Pell equation eq. (2) has only one class (it is ambiguous) (see
e.g., Nagell [2], p. 205).

3) The requirement U T odd in eq. (1) prevents values for d = E D which are listed in A007969 (those
with even y solutions of eq. (2)). For example, for d = 56 there are solutions for E, D, U, T given by
4, 14, 2, 1 and 2, 28, 15, 4,
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4) For the first numbers (d, x0, y0) and (E, D, U0, T0) see the Table. There X0 depends on the parity

of d: if d is odd then X0 =
x0

2
, and if d is even then X0 =

x0 − 1

2
. For the x0 values see A262027, and

for y0 and Y0 see A262026 and A262028, respectively.
For E, D, U0 and T0 for d = E D from A007970 see A191857, A191856, A26309 and A263008 (after
correction), respectively.

In conclusion, we paraphrase Conway’s theorem.

Theorem [Conway [1]] Tripartition of the positive integers

There is a trivial bipartition of the set ∆ := {d ∈ N | d not a square} by the parity of the positive
fundamental solution y0 (the smallest positive value) of the Pell eq. (1). ∆ = ∆e ∪ ∆o with ∆e = {d ∈
N | d not a square, and y0 even} and ∆o = {d ∈ N | d not a square, and y0 odd}. Together with the set
of the positive square numbers S this provides the disjoint tripartition of N = S ∪ ∆.

Conway’s tripartition of positive integers with the products of the 0−, 1− and 2−happy couples A000290,
A007969 and A007970, respectively, has been shown here and in the link of A007969 to correspond to the
above trivial tripartition.

The author wonders about Conway’s “truly wonderful proof”.
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TABLE: d, X0, Y0, E, D, U0, T0

d X0 Y0 E D U0 T0

3 1 0 3 1 1 1
7 4 1 1 7 3 1
8 1 0 4 2 1 1
11 5 1 11 1 1 3
15 2 0 5 3 1 1
19 85 19 19 1 3 13
23 12 2 1 23 5 1
24 2 0 6 4 1 1
27 13 2 27 1 1 5
31 760 136 1 31 39 7
32 8 1 2 16 3 1
35 3 0 7 5 1 1
40 9 1 20 2 1 3
43 1741 265 43 1 9 59
47 24 3 1 47 7 1
48 3 0 8 6 1 1
51 25 3 51 1 1 7
59 265 34 59 1 3 23
63 4 0 9 7 1 1
67 24421 2983 67 1 27 221
71 1740 206 1 71 59 7
75 13 1 3 25 3 1
79 40 4 1 79 9 1
80 4 0 10 8 1 1
83 41 4 83 1 1 9
87 14 1 29 3 1 3
88 98 10 22 4 3 7
91 787 82 7 13 15 11
96 24 2 2 48 5 1
99 5 0 11 9 1 1
103 113764 11209 1 103 477 47
104 25 2 52 2 1 5
107 481 46 107 1 3 31
115 563 52 23 5 7 15
119 60 5 1 119 11 1
120 5 0 12 10 1 1
123 61 5 123 1 1 11
127 2365312 209887 1 127 2175 193
128 288 25 2 64 17 3
131 5305 436 131 1 9 103
135 122 10 5 27 7 3
136 17 1 4 34 3 1
139 38781625 3289414 139 1 747 8807
...
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