login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A015446
Generalized Fibonacci numbers: a(n) = a(n-1) + 10*a(n-2).
16
1, 1, 11, 21, 131, 341, 1651, 5061, 21571, 72181, 287891, 1009701, 3888611, 13985621, 52871731, 192727941, 721445251, 2648724661, 9863177171, 36350423781, 134982195491, 498486433301, 1848308388211, 6833172721221
OFFSET
0,3
COMMENTS
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=2, 11*a(n-2) equals the number of 11-colored compositions of n with all parts >=2, such that no adjacent parts have the same color. - Milan Janjic, Nov 26 2011
For a(n) = [(1+(4m+1)^1/2)^n)-(1-(4m+1)^1/2))^n)]/[(2^n)(4m+1)^1/2), a(n)/a(n-1) appears to converge to (1+sqrt(4m+1))/2. Here with m = 10, the numbers in the sequence are congruent with those of the Fibonacci sequence modulo m-1 = 9. For example, F(8) = 21 (Fibonacci) corresponds to a(8) = 5061 (here) because 2+1 and 5+0+1+6 are congruent. - Maleval Francis, Nov 12 2013
FORMULA
a(n) = (((1+sqrt(41))/2)^(n+1) - ((1-sqrt(41))/2)^(n+1))/sqrt(41).
From Paul Barry, Sep 10 2005: (Start)
a(n) = Sum_{k=0..n} binomial((n+k)/2, k)*(1+(-1)^(n-k))*10^((n-k)/2)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*10^k. (End)
a(n) is the entry (M^n)_1,1 where the matrix M = [1,2;5,0]. - Simone Severini, Jun 22 2006
a(n) = Sum_{k=0..n} A109466(n,k)*(-10)^(n-k). - Philippe Deléham, Oct 26 2008
G.f.: 1/(1-x-10*x^2). - Colin Barker, Feb 03 2012
a(n) = (sum{1<=k<=n+1, k odd}C(n+1,k)*41^((k-1)/2))/2^n. - Vladimir Shevelev, Feb 05 2014
MATHEMATICA
Table[MatrixPower[{{1, 2}, {5, 0}}, n][[1]][[1]], {n, 0, 44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
CoefficientList[Series[1/(1-x-10*x^2), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2017 *)
LinearRecurrence[{1, 10}, {1, 1}, 30] (* Harvey P. Dale, Dec 12 2018 *)
PROG
(Sage) [lucas_number1(n, 1, -10) for n in range(1, 25)] # Zerinvary Lajos, Apr 22 2009
(Magma) [ n eq 1 select 1 else n eq 2 select 1 else Self(n-1)+10*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 23 2011
(PARI) a(n)=([1, 2; 5, 0]^n)[1, 1] \\ Charles R Greathouse IV, Mar 09 2014
CROSSREFS
Sequence in context: A094623 A321509 A034922 * A254208 A083177 A110466
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy