login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A017455
a(n) = (11*n + 5)^7.
12
78125, 268435456, 10460353203, 114415582592, 678223072849, 2799360000000, 9095120158391, 24928547056768, 60170087060757, 131593177923584, 266001988046875, 504189521813376, 905824306333433, 1555363874947072, 2569093262823519, 4103386730000000, 6364290927201661, 9618527719784448
OFFSET
0,1
LINKS
FORMULA
From G. C. Greubel, Sep 19 2019: (Start)
G.f.: (78125 +267810456*x +8315057055*x^2 +38244574736*x^3 +40761385011* x^4 +10218057336*x^5 +408099185*x^6 +279936*x^7)/(1-x)^8.
E.g.f.: (78125 +268357331*x +4961780208*x^2 +13973291871*x^3 + 11760383250*x^4 +3742825240*x^5 +471235226*x^6 +19487171*x^7)*exp(x). (End)
MAPLE
seq((11*n+5)^7, n=0..20); # G. C. Greubel, Sep 19 2019
MATHEMATICA
(11*Range[21] -6)^7 (* G. C. Greubel, Sep 19 2019 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {78125, 268435456, 10460353203, 114415582592, 678223072849, 2799360000000, 9095120158391, 24928547056768}, 20] (* Harvey P. Dale, Apr 22 2024 *)
PROG
(Magma) [(11*n+5)^7: n in [0..20]]; // Vincenzo Librandi, Sep 03 2011
(PARI) vector(20, n, (11*n-6)^7) \\ G. C. Greubel, Sep 19 2019
(Sage) [(11*n+5)^7 for n in (0..20)] # G. C. Greubel, Sep 19 2019
(GAP) List([0..20], n-> (11*n+5)^7); # G. C. Greubel, Sep 19 2019
CROSSREFS
Powers of the form (11*n+5)^m: A017449 (m=1), A017450 (m=2), A017451 (m=3), A017452 (m=4), A017453 (m=5), A017454 (m=6), this sequence (m=7), A017456 (m=8), A017457 (m=9), A017458 (m=10), A017459 (m=11), A017460 (m=12).
Sequence in context: A017227 A265935 A017335 * A017587 A237565 A219333
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy