login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A017838
Expansion of 1/(1-x^5-x^6-x^7).
1
1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 2, 3, 2, 1, 1, 3, 6, 7, 6, 4, 5, 10, 16, 19, 17, 15, 19, 31, 45, 52, 51, 51, 65, 95, 128, 148, 154, 167, 211, 288, 371, 430, 469, 532, 666, 870, 1089, 1270, 1431, 1667, 2068, 2625, 3229
OFFSET
0,12
COMMENTS
Number of compositions (ordered partitions) of n into parts 5, 6 and 7. - Ilya Gutkovskiy, May 25 2017
FORMULA
a(n) = a(n-5) + a(n-6) + a(n-7). - Vincenzo Librandi, Mar 23 2011
a(n) = Sum_{k=0..floor(n/4)} Sum_{j=0..k} binomial(j,n-5*k-j)*binomial(k,j). - Vladimir Kruchinin, Nov 16 2011
MAPLE
seq(coeff(series(1/(1-x^5-x^6-x^7), x, n+1), x, n), n=0..60); # Muniru A Asiru, Jul 04 2018
MATHEMATICA
CoefficientList[Series[1/(1 - x^5 - x^6 - x^7), {x, 0, 60}], x] (* or *) LinearRecurrence[{0, 0, 0, 0, 1, 1, 1}, {1, 0, 0, 0, 0, 1, 1}, 60] (* Harvey P. Dale, Jun 28 2011 *)
PROG
(Maxima) a(n):=sum(sum(binomial(j, n-5*k-j)*binomial(k, j), j, 0, k), k, 0, n/4); /* Vladimir Kruchinin, Nov 16 2011 */
CROSSREFS
Sequence in context: A086437 A027907 A026323 * A181567 A058294 A323834
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy