login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A019333
Expansion of g.f. 1/((1-4*x)*(1-6*x)*(1-8*x)).
3
1, 18, 220, 2280, 21616, 194208, 1685440, 14290560, 119232256, 983566848, 8047836160, 65462691840, 530198327296, 4280634482688, 34479631482880, 277245459333120, 2226418414452736, 17862092934217728, 143201285904793600, 1147437816702566400, 9190468809917464576
OFFSET
0,2
FORMULA
a(n) = 2*4^n -9*6^n +8*8^n. - R. J. Mathar, Jun 29 2013
From Vincenzo Librandi, Jul 02 2013: (Start)
a(n) = 18*a(n-1) - 104*a(n-2) + 192*a(n-3) for n > 2.
a(n) = 14*a(n-1) - 48*a(n-2) + 4^n. (End)
E.g.f.: exp(4*x)*(2 - 9*exp(2*x) + 8*exp(4*x)). - Stefano Spezia, Jun 04 2024
MATHEMATICA
CoefficientList[Series[1 / ((1 - 4 x) (1 - 6 x) (1 - 8 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 02 2013 *)
PROG
(PARI) Vec(1/((1-4*x)*(1-6*x)*(1-8*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-6*x)*(1-8*x)))); /* or */ I:=[1, 18, 220]; [n le 3 select I[n] else 18*Self(n-1)-104*Self(n-2)+192*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 02 2013
CROSSREFS
Equals 2^n * A016269.
Sequence in context: A046915 A041616 A224296 * A021454 A021224 A017997
KEYWORD
nonn,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy