login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A019431
Continued fraction for tan(1/8).
3
0, 7, 1, 22, 1, 38, 1, 54, 1, 70, 1, 86, 1, 102, 1, 118, 1, 134, 1, 150, 1, 166, 1, 182, 1, 198, 1, 214, 1, 230, 1, 246, 1, 262, 1, 278, 1, 294, 1, 310, 1, 326, 1, 342, 1, 358, 1, 374, 1, 390, 1, 406, 1, 422, 1, 438, 1, 454, 1, 470, 1, 486, 1, 502, 1, 518, 1, 534, 1, 550, 1, 566, 1, 582
OFFSET
0,2
FORMULA
From Colin Barker, Sep 08 2013: (Start)
a(n) = (-1+3*(-1)^n-8*(-1+(-1)^n)*n)/2 for n>1.
a(n) = 2*a(n-2)-a(n-4) for n>5.
G.f.: x*(x^4-x^3+8*x^2+x+7) / ((x-1)^2*(x+1)^2). (End)
EXAMPLE
0.12565513657513096779267821... = 0 + 1/(7 + 1/(1 + 1/(22 + 1/(1 + ...)))). - Harry J. Smith, Jun 14 2009
MATHEMATICA
Join[{0, 7}, LinearRecurrence[{0, 2, 0, -1}, {1, 22, 1, 38}, 100]] (* Vincenzo Librandi, Jan 03 2016 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 97000); x=contfrac(tan(1/8)); for (n=0, 20000, write("b019431.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 14 2009
(PARI) Vec(x*(x^4-x^3+8*x^2+x+7)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 08 2013
(Magma) [0, 7] cat [(-1+3*(-1)^n-8*(-1+(-1)^n)*n)/2: n in [2..80]] // Vincenzo Librandi, Jan 03 2016
CROSSREFS
Cf. A161017 (decimal expansion), A019425 through A019433.
Sequence in context: A274717 A050310 A178445 * A264615 A261248 A214686
KEYWORD
nonn,cofr,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy