login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A019484
Expansion of (8 + 7 x - 7 x^2 - 7 x^3)/(1 - 6 x - 7 x^2 + 5 x^3 + 6 x^4).
2
8, 55, 379, 2612, 18002, 124071, 855106, 5893451, 40618081, 279942687, 1929384798, 13297456486, 91647010581, 631637678776, 4353291555505, 30003193292641, 206784130187015, 1425170850320396, 9822378297435246, 67696525926163327, 466569244606302614
OFFSET
0,1
COMMENTS
Agrees with A010918 for terms 0 through 11055 but then differs from it.
a(11056) = 4971494197...7586894094 (9270 digits) = A010918(11056) - 1. - Jianing Song, Oct 15 2021
REFERENCES
R. K. Guy, personal communication.
FORMULA
G.f.: (8 + 7 x - 7 x^2 - 7 x^3)/(1 - 6 x - 7 x^2 + 5 x^3 + 6 x^4).
MAPLE
- (8 + 7*x - 7*x^2 - 7*x^3) /(7*x^2 - 1 + 6*x - 6*x^4 - 5*x^3);
MATHEMATICA
CoefficientList[ Series[(8 + 7 x - 7 x^2 - 7 x^3)/(1 - 6 x - 7 x^2 + 5 x^3 + 6 x^4), {x, 0, 18}], x] (* Robert G. Wilson v, May 16 2008 *)
LinearRecurrence[{6, 7, -5, -6}, {8, 55, 379, 2612}, 20] (* Harvey P. Dale, Apr 20 2017 *)
PROG
(Magma) I:=[8, 55, 379, 2612]; [n le 4 select I[n] else 6*Self(n-1)+7*Self(n-2)-5*Self(n-3)-6*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 21 2017
CROSSREFS
Cf. A010918.
Sequence in context: A010924 A308687 A010918 * A108984 A264342 A230963
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
The old definition was a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3), but as R. J. Mathar pointed out, this did not match the entries. I have therefore replaced the definition with a g.f. found by Superseeker. - N. J. A. Sloane, May 16 2008
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy