login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes that remain prime through 3 iterations of the function f(x) = 2*x + 1.
35

%I #44 Sep 08 2022 08:44:47

%S 2,5,89,179,359,509,1229,1409,2699,3539,6449,10589,11549,11909,12119,

%T 17159,19709,19889,22349,26189,27479,30389,43649,53639,53849,55229,

%U 57839,60149,61409,63419,66749,71399,74699,75329,82499,87539,98369,101399,104369

%N Primes that remain prime through 3 iterations of the function f(x) = 2*x + 1.

%C Primes p such that 2*p+1, 4*p+3 and 8*p+7 are also primes. - _Vincenzo Librandi_, Aug 04 2010

%C For n > 2, a(n) == 29 (mod 30). - _Zak Seidov_, Jan 31 2013

%H Nathaniel Johnston, <a href="/A023272/b023272.txt">Table of n, a(n) for n = 1..1000</a>

%p p:=2: for n from 1 to 5000 do if(isprime(2*p+1) and isprime(4*p+3) and isprime(8*p+7))then printf("%d, ",p): fi: p:=nextprime(p): od: # _Nathaniel Johnston_, Jun 30 2011

%t Select[Prime[Range[10^3*4]], PrimeQ[a1=2*#+1] && PrimeQ[a2=2*a1+1] && PrimeQ[a3=2*a2+1] &] (* _Vladimir Joseph Stephan Orlovsky_, May 01 2008 *)

%t Join[{2, 5}, Select[Range[89, 104369, 30], PrimeQ[#] && PrimeQ[2*# + 1] && PrimeQ[4*# + 3] && PrimeQ[8*# + 7] &]] (* _Zak Seidov_, Jan 31 2013 *)

%t p3iQ[n_]:=AllTrue[NestList[2#+1&,n,3],PrimeQ]; Join[{2,5},Select[ Range[ 89,200000,30],p3iQ]] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 30 2019 *)

%o (Magma) [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+1) and IsPrime(4*n+3) and IsPrime(8*n+7)] // _Vincenzo Librandi_, Aug 04 2010

%o (PARI) is(n)=isprime(n)&&isprime(2*n+1)&&isprime(4*n+3)&&isprime(8*n+7) \\ _Charles R Greathouse IV_, Mar 21 2013

%Y Intersection of A007700 and A023231.

%Y Cf. A005384, A005385, A023302, A023330, A057331, A005602.

%K nonn

%O 1,1

%A _David W. Wilson_

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy