login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A026837
Number of partitions of n into distinct parts, the greatest being odd.
7
1, 0, 1, 1, 2, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 16, 19, 23, 27, 32, 38, 45, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 556, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2049, 2291, 2560, 2859
OFFSET
1,5
COMMENTS
Fine's theorem: A026838(n) - a(n) = 1 if n = k(3k+1)/2, = -1 if n = k(3k-1)/2, = 0 otherwise (see A143062).
Also number of partitions of n into an odd number of parts and such that parts of every size from 1 to the largest occur. Example: a(9)=4 because we have [3,2,2,1,1],[2,2,2,2,1],[2,2,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 04 2006
FORMULA
G.f.: sum(k>=1, x^(2k-1) * prod(j=1..2k-2, 1+x^j ) ). - Emeric Deutsch, Apr 04 2006
a(2*n) = A118302(2*n), a(2*n-1) = A118301(2*n-1); a(n) = A000009(n) - A026838(n). - Reinhard Zumkeller, Apr 22 2006
EXAMPLE
a(9)=4 because we have [9],[7,2],[5,4] and [5,3,1].
MAPLE
g:=sum(x^(2*k-1)*product(1+x^j, j=1..2*k-2), k=1..40): gser:=series(g, x=0, 60): seq(coeff(g, x, n), n=1..54); # Emeric Deutsch, Apr 04 2006
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(Length[#]==Length[Union[#]] && OddQ[ First[#]]&)], {n, 60}] (* Harvey P. Dale, Jun 28 2014 *)
CROSSREFS
Cf. A026838.
Cf. A027193.
Sequence in context: A256636 A258327 A102240 * A366916 A005855 A096748
KEYWORD
nonn
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy