login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 21*(n+1)*binomial(n+4,9).
1

%I #30 Feb 03 2022 09:42:13

%S 126,1470,9240,41580,150150,462462,1261260,3123120,7147140,15315300,

%T 31039008,59961720,111105540,198470580,343219800,576609264,943854450,

%U 1509157650,2362159800,3626122500,5468192730,8112154050,11854124100,17081719200,24297273000

%N a(n) = 21*(n+1)*binomial(n+4,9).

%C Number of 14-subsequences of [ 1, n ] with just 4 contiguous pairs.

%H T. D. Noe, <a href="/A027805/b027805.txt">Table of n, a(n) for n = 5..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F G.f.: 42*(3+2x)*x^5/(1-x)^11.

%F a(n) = C(n+1, 6)*C(n+4, 4). - _Zerinvary Lajos_, May 25 2005; corrected by _R. J. Mathar_, Feb 13 2016

%F From _Amiram Eldar_, Feb 03 2022: (Start)

%F Sum_{n>=5} 1/a(n) = 1160923/29400 - 4*Pi^2.

%F Sum_{n>=5} (-1)^(n+1)/a(n) = 2*Pi^2 + 1536*log(2)/35 - 491481/9800. (End)

%t Table[21(n+1)Binomial[n+4,9],{n,5,30}] (* _Harvey P. Dale_, Sep 19 2011 *)

%o (PARI) a(n)=21*(n+1)*binomial(n+4,9) \\ _Charles R Greathouse IV_, Sep 19 2011

%K nonn,easy

%O 5,1

%A Thi Ngoc Dinh (via _R. K. Guy_)

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy