login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A029930
If 2n = Sum 2^e_i, a(n) = Product 2^e_i.
7
1, 2, 4, 8, 8, 16, 32, 64, 16, 32, 64, 128, 128, 256, 512, 1024, 32, 64, 128, 256, 256, 512, 1024, 2048, 512, 1024, 2048, 4096, 4096, 8192, 16384, 32768, 64, 128, 256, 512, 512, 1024, 2048, 4096, 1024, 2048, 4096, 8192, 8192, 16384, 32768, 65536, 2048
OFFSET
0,2
LINKS
Arvind Ayyer, A. Prasad and S. Spallone, Representations of symmetric groups with non-trivial determinant, arXiv preprint arXiv:1604.08837 [math.RT], 2016. See Eq. (14).
FORMULA
From Ralf Stephan, Jun 19 2003: (Start)
G.f.: Prod_{k>=0} 1+2^(k+1)x^2^k.
a(0) = 1, a(2n) = 2^e1(n)*a(n), a(2n+1) = 2a(2n), where e1(n) = A000120(n).
a(n) = 2^A029931(n). (End)
EXAMPLE
14 = 8+4+2 so a(7) = 8*4*2 = 64.
MAPLE
HammingWeight := n -> add(i, i = convert(n, base, 2)):
a := proc(n) option remember; `if`(n = 0, 1,
ifelse(n::even, 2^HammingWeight(n/2)*a(n/2), 2*a(n-1))) end:
seq(a(n), n = 0..48); # Peter Luschny, Oct 30 2021
MATHEMATICA
e1[n_] := Total[IntegerDigits[n, 2]]; a[0] = 1; a[n_] := a[n] = If[EvenQ[ n], 2^e1[n/2] a[n/2], 2 a[n-1]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 07 2016 *)
PROG
(PARI) a(n) = {my(bd = Vecrev(binary(n))); prod(k=1, #bd, if (bd[k], 2^k, 1)); } \\ Michel Marcus, Mar 07 2016
CROSSREFS
A bisection of A059867.
Sequence in context: A076735 A192097 A132720 * A334284 A193850 A140119
KEYWORD
nonn,easy,look
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy