login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030225
Number of achiral hexagonal polyominoes with n cells.
8
1, 1, 3, 4, 11, 17, 46, 75, 202, 341, 914, 1581, 4222, 7436, 19794, 35357, 93859, 169558, 449039, 818793, 2163827, 3976636, 10489341, 19406704, 51103471, 95099113, 250040802, 467679257, 1227941119, 2307128946
OFFSET
1,3
COMMENTS
These are polyominoes of the Euclidean regular tiling of hexagons with Schläfli symbol {6,3}. This sequence can most readily be calculated by enumerating fixed polyominoes for three situations: 1) fixed polyominoes with a horizontal axis of symmetry along an edge of a cell with no cell centered on that axis, A001207(n/2), 2) fixed polyominoes with a horizontal axis of symmetry that is a diagonal of at least one cell, A347258, and 3) fixed polyominoes with a horizontal axis of symmetry that joins the midpoints of opposite edges of at least one cell, A347257. These three sequences include each achiral polyomino exactly twice. - Robert A. Russell, Aug 24 2021
FORMULA
From Robert A. Russell, Aug 24 2021: (Start)
For odd n, a(n) = (A347257(n) + A347258(n)) / 2; for even n, a(n) = (A001207(n/2) + A347257(n) + A347258(n)) / 2.
a(n) = 2*A000228(n) - A006535(n) = A006535(n) - 2*A030226(n) = A000228(n) - A030226(n). (End)
MATHEMATICA
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {_, _}][[All, 2]]];
A000228 = A@000228;
A006535 = A@006535;
a[n_] := 2 A000228[[n]] - A006535[[n]];
a /@ Range[20] (* Jean-François Alcover, Feb 22 2020 *)
CROSSREFS
Cf. A006535 (oriented), A000228 (unoriented), A030226 (chiral).
Calculation components: A001207, A347257, A347258.
Other tilings: A030223 {3,6}, A030227 {4,4}.
Sequence in context: A026753 A027222 A026380 * A339157 A060285 A025079
KEYWORD
nonn,more
EXTENSIONS
More terms from Joseph Myers, Sep 21 2002
Name edited by Robert A. Russell, Aug 24 2021
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy