Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #22 Aug 20 2018 06:24:55
%S 1,36,648,7788,70416,511668,3116952,16395516,76117536,317222212,
%T 1202893992,4196289420,13591279920,41188096980,117561917880,
%U 317844953628,818017823808,2012724468324,4752575891144,10805739370668
%N Coordination sequence for 18-dimensional cubic lattice.
%H Seiichi Manyama, <a href="/A035713/b035713.txt">Table of n, a(n) for n = 0..10000</a>
%H J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (18, -153, 816, -3060, 8568, -18564, 31824, -43758, 48620, -43758, 31824, -18564, 8568, -3060, 816, -153, 18, -1).
%F G.f.: ((1+x)/(1-x))^18.
%F n*a(n) = 36*a(n-1) + (n-2)*a(n-2) for n > 1. - _Seiichi Manyama_, Aug 20 2018
%K nonn,easy
%O 0,2
%A Joan Serra-Sagrista (jserra(AT)ccd.uab.es)
%E Recomputed by _N. J. A. Sloane_, Nov 25 1998