login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A039959
Number of ways of numbering the vertices of a cube so sum of the 8 numbers is n.
1
1, 1, 4, 7, 21, 37, 85, 151, 292, 490, 848, 1346, 2157, 3260, 4925, 7148, 10327, 14477, 20177, 27483, 37194, 49431, 65277, 84945, 109873, 140394, 178377, 224334, 280647, 348040, 429526, 526108, 641524, 777127, 937513, 1124461, 1343567, 1597115, 1891850
OFFSET
0,3
COMMENTS
In Redfield 1927 on page 443 he writes "If in V we put 1/(1-x^r) for every s_r, we obtain the infinite series 1 + x + 4x^2 + 7x^3 + 21x^4 + 37x^5 + ..., in which the coefficient of x^t enumerates the distinct configurations obtained by placing a zero or a positive integer at every vertex of the cube, subject to the condition that the sum of the 8 numbers is always t.". - Michael Somos, Oct 17 2015
Note that the enumeration is modded out by the symmetries of the cube. - Michael Somos, Oct 17 2015
REFERENCES
J. H. Redfield, The theory of group-reduced distributions, Amer. J. Math., 49 (1927), 433-455; reprinted in P. A. MacMahon, Coll. Papers I, pp. 805-827.
FORMULA
G.f.: (x^12 - x^11 + x^10 + 6*x^8 + x^7 + 8*x^6 + x^5 + 6*x^4 + x^2 - x + 1) / ((1 - x) * (1 - x^2) * (1 - x^3) * (1 - x^4))^2. - Michael Somos, Mar 05 2004
G.f.: (1/24) * (1 - x)^-8 + (3/8) * (1 - x^2)^-4 + (1/3) * (1 - x)^-2 * (1 - x^3)^-2 + (1/4) * (1 - x^4)^-2. - Michael Somos, Oct 17 2015
a(n) = -a(-8 - n) for all n in Z. - Michael Somos, Oct 17 2015
EXAMPLE
For n=2 the 4 ways are: {0000 0002}, {0000 0011}, {0001 0100}, {0001 1000}.
G.f. = 1 + x + 4*x^2 + 7*x^3 + 21*x^4 + 37*x^5 + 85*x^6 + 151*x^7 + 292*x^8 + ...
MAPLE
1/24/(1-x)^8+3/8/(1-x^2)^4+1/3/(1-x^3)^2/(1-x)^2+1/4/(1-x^4)^2;
MATHEMATICA
a[ n_] := Ceiling[ (3 n^7 + 84 n^6 + 966 n^5 + 5880 n^4 + If[ OddQ@n, 22547 n^3 + 66276 n^2, 25382 n^3 + 100296 n^2] + 12 n (10547 + 35 If[ OddQ@n, If[ Mod[n, 6] < 5, 32, 0], If[ Mod[n, 6] == 2, 297, 329] + 54 Boole[Mod[n, 4] == 0]]) + 1) / 362880]; (* Michael Somos, Oct 17 2015 *)
PROG
(PARI) {a(n) = if( n<-4, -a(-8 - n), polcoeff( subst( Pol([ 1, -1, -5, 5, 11, -4, -4]), x, x + 1/x) * x^6 / prod(k=1, 4, 1 - x^k)^2 + x * O(x^n), n))}; /* Michael Somos, Mar 05 2004 */
(PARI) {a(n) = ceil( (3*n^7 + 84*n^6 + 966*n^5 + 5880*n^4 + if( n%2, 22547*n^3 + 66276*n^2, 25382*n^3 + 100296*n^2) + 12*n * (10547 + 35 * if( n%2, if( n%6<5, 32, 0), if( n%6==2, 297, 329) + 54*(n%4==0))) + 1) / 362880)}; /* Michael Somos, Oct 17 2015 */
CROSSREFS
Sequence in context: A368185 A359603 A255512 * A320663 A186335 A010363
KEYWORD
nonn
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy