OFFSET
1,2
COMMENTS
Or, numbers n such that the sum of the divisors of n is a power of 2, see A094502.
Or, numbers n such that the number of divisors of n and the sum of the divisors of n are both powers of 2.
n is a product of distinct Mersenne primes iff sigma(n) is a power of 2: see exercise in Sivaramakrishnan, or Shallit.
Sequence gives n > 1 such that sigma(n) = 2*phi(sigma(n)). - Benoit Cloitre, Feb 22 2002
The graph of this sequence shows a discontinuity at the 4097th number because there is a large relative gap between the 12th and 13th Mersenne primes, A000043. Other discontinuities can be predicted using A078426. - T. D. Noe, Oct 12 2006
Supersequence of A051281 (numbers n such that sigma(n) is a power of tau(n)). Conjecture: numbers n such that sigma(n) = tau(n)^(a/b), where a, b are integers >= 1. Example: sigma(93) = 128 = tau(93)^(7/2) = 4^(7/2). - Jaroslav Krizek, May 04 2013
REFERENCES
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problem 264 pp. 188, Ellipses Paris 2004.
R. Sivaramakrishnan, Classical Theory of Arithmetic Functions. Dekker, 1989.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..5000 from T. D. Noe)
Kevin S. Brown, Sum of Divisors Equals a Power of 2.
C. D. H. Cooper, Problem E 2493, The American Mathematical Monthly, Vol. 81, No. 8 (1974), p. 902; W. J. Dodge, solution, ibid., Vol. 82, No. 8 (1975), pp. 855-856.
Jeffrey Shallit, Problem 1319, Diophantine Equation, sigma(n) = 2^m, Math. Magazine, 63 (1990), 129.
Eric Weisstein's World of Mathematics, Divisor Function.
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p in A000668} (1 + 1/p) = 1.5855588879... (A306204) - Amiram Eldar, Jan 06 2021
EXAMPLE
a(20) = 82677 = 3*7*31*127, whose sum of divisors is 131072 = 2^17;
a(27) = 1040257 = 127*8191, whose sum of divisors is 1048576 = 2^20.
MAPLE
mersennes:= [seq(numtheory:-mersenne([i]), i=1..10)]:
sort(select(`<`, map(convert, combinat:-powerset(mersennes), `*`), numtheory:-mersenne([11]))); # Robert Israel, May 01 2016
MATHEMATICA
{1}~Join~TakeWhile[Times @@@ Rest@ Subsets@ # // Sort, Function[k, k <= Last@ #]] &@ Select[2^Range[0, 31] - 1, PrimeQ] (* Michael De Vlieger, May 01 2016 *)
PROG
(PARI) isok(n) = (n==1) || (ispower(sigma(n), , &r) && (r==2)); \\ Michel Marcus, Dec 10 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Benoit Cloitre, Feb 22 2002
Further terms from Jon Hart, Sep 22 2006
Entry revised by N. J. A. Sloane, Mar 20 2007
Three more terms from Michel Marcus, Dec 10 2013
STATUS
approved