login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A050231
a(n) is the number of n-tosses having a run of 3 or more heads for a fair coin (i.e., probability is a(n)/2^n).
16
0, 0, 1, 3, 8, 20, 47, 107, 238, 520, 1121, 2391, 5056, 10616, 22159, 46023, 95182, 196132, 402873, 825259, 1686408, 3438828, 6999071, 14221459, 28853662, 58462800, 118315137, 239186031, 483072832, 974791728, 1965486047
OFFSET
1,4
COMMENTS
a(n-1) is the number of compositions of n with at least one part >= 4. - Joerg Arndt, Aug 06 2012
REFERENCES
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, p. 300, 1968.
LINKS
David Broadhurst, Multiple Landen values and the tribonacci numbers, arXiv:1504.05303 [hep-th], 2015.
Simon Cowell, A Formula for the Reliability of a d-dimensional Consecutive-k-out-of-n:F System, arXiv preprint arXiv:1506.03580 [math.CO], 2015.
T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
Eric Weisstein's World of Mathematics, Run
FORMULA
a(n) = 2^n - tribonacci(n+3), see A000073. - Vladeta Jovovic, Feb 23 2003
G.f.: x^3/((1-2*x)*(1-x-x^2-x^3)). - Geoffrey Critzer, Jan 29 2009
a(n) = 2 * a(n-1) + 2^(n-4) - a(n-4) since we can add T or H to a sequence of n-1 flips which has HHH, and H to one which ends in THH and does not have HHH among the first (n-4) flips. - Toby Gottfried, Nov 20 2010
a(n) = 3*a(n-1) - a(n-2) - a(n-3) - 2*a(n-4), a(0)=0, a(1)=0, a(2)=1, a(3)=3. - David Nacin, Mar 07 2012
MATHEMATICA
LinearRecurrence[{3, -1, -1, -2}, {0, 0, 1, 3}, 50] (* David Nacin, Mar 07 2012 *)
PROG
(Python)
def a(n, adict={0:0, 1:0, 2:1, 3:3}):
if n in adict:
return adict[n]
adict[n]=3*a(n-1)-a(n-2)-a(n-3)-2*a(n-4)
return adict[n] # David Nacin, Mar 07 2012
(PARI) concat([0, 0], Vec(1/(1-2*x)/(1-x-x^2-x^3)+O(x^99))) \\ Charles R Greathouse IV, Feb 03 2015
CROSSREFS
KEYWORD
nonn,nice,easy
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy