login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of e.g.f. (x + 1 - sqrt(1-6*x+x^2))/2.
10

%I #26 May 28 2022 04:02:36

%S 0,2,4,36,528,10800,283680,9102240,345058560,15090727680,747888422400,

%T 41422381862400,2535569103513600,169983582318950400,

%U 12386182292118835200,974723523832041984000,82385641026424479744000

%N Expansion of e.g.f. (x + 1 - sqrt(1-6*x+x^2))/2.

%C With a(n)=1, also number of labeled mobiles with n nodes and 2-colored internal (non-leaf) nodes - _Christian G. Bower_, Jun 07 2005

%H G. C. Greubel, <a href="/A052716/b052716.txt">Table of n, a(n) for n = 0..345</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=672">Encyclopedia of Combinatorial Structures 672</a>

%H <a href="/index/Mo#mobiles">Index entries for sequences related to mobiles</a>

%F D-finite with recurrence: a(2)=4, a(1)=2, (n^2-1)*a(n) = (3+6*n)*a(n+1) - a(n+2).

%F a(n) = n!*A006318(n-1), n>=2. - _R. J. Mathar_, Oct 26 2013

%p spec := [S,{C=Union(B,Z),B=Prod(S,C),S=Union(Z,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t With[{nn=20},CoefficientList[Series[(x+1-Sqrt[1-6x+x^2])/2,{x,0,nn}],x] Range[ 0,nn]!] (* _Harvey P. Dale_, Apr 19 2020 *)

%o (Magma) [n le 1 select 1-(-1)^n else Factorial(n)*(&+[Catalan(k)*Binomial(n+k-1, n-k-1): k in [0..n-1]]): n in [0..30]]; // _G. C. Greubel_, May 28 2022

%o (SageMath) [bool(n==1)+factorial(n)*sum(binomial(n+k-1, n-k-1)*catalan_number(k) for k in (0..n-1)) for n in (0..30)] # _G. C. Greubel_, May 28 2022

%Y Cf. A006318, A108531.

%K easy,nonn

%O 0,2

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy