login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A053579
Composite numbers whose cototient (A051953) is a power of 2.
6
4, 6, 8, 12, 14, 16, 24, 28, 32, 48, 56, 62, 64, 96, 112, 124, 128, 192, 224, 248, 254, 256, 384, 448, 496, 508, 512, 768, 896, 992, 1016, 1024, 1536, 1792, 1984, 2032, 2048, 3072, 3584, 3968, 4064, 4096, 6144, 7168, 7936, 8128, 8192, 12288, 14336
OFFSET
1,1
LINKS
Jud McCranie, Table of n, a(n) for n = 1..316 (First 235 terms from Donovan Johnson)
EXAMPLE
If n = 3*2^s, cototient(n) = 3*2^s-2*2^(s-1)=2^(s+1); if n = 7*2^s, cototient(n) = (7-6)*2^(s-1) = 2^(s+2). If cototient(x) = 32768, then arguments are 3*16384, 7*8192, 31*2048, 127*512, 8191*8 and 65536. If n = (2^w)*q, where q is a Mersenne prime, then phi(n) = (q-1)*2^(w-1) and the cototient(n) = 2^(w-1)*(2q-q+1) = 2^(w-1)*(q+1) = 2^(w-1+s).
MATHEMATICA
Select[Range[4, 15000], And[CompositeQ@ #, IntegerQ@ Log2[# - EulerPhi@ #]] &] (* Michael De Vlieger, Mar 05 2017 *)
PROG
(PARI) isok(n) = !isprime(n) && (c = (n - eulerphi(n))) && ((c == 2) || (ispower(c, , &x) && (x == 2))); \\ Michel Marcus, Dec 17 2013
CROSSREFS
Cf. A051953.
Sequence in context: A107303 A028876 A271346 * A074121 A175088 A275671
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 18 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy