login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A054252
Triangle T(n,k) of n X n binary matrices with k=0..n^2 ones under action of dihedral group of the square D_4.
25
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 8, 16, 23, 23, 16, 8, 3, 1, 1, 3, 21, 77, 252, 567, 1051, 1465, 1674, 1465, 1051, 567, 252, 77, 21, 3, 1, 1, 6, 49, 319, 1666, 6814, 22475, 60645, 136080, 256585, 410170, 559014, 652048, 652048, 559014, 410170, 256585, 136080
OFFSET
0,6
COMMENTS
From Geoffrey Critzer, Feb 19 2013: (Start)
Cycle indices for n=2,3,4,5 respectively are:
(1/8)(s[1]^4 + 2*s[1]^2*s[2] + 3*s[2]^2 + 2*s[4]).
(1/8)(s[1]^9 + 4*s[1]^3*s[2]^3 + s[1]s[2]^4 + 2*s[1]*s[4]^2).
(1/8)(s[1]^16 + 2*s[1]^4*s[2]^6 + 2*s[4]^4 + 3*s[2]^8).
(1/8)(s[1]^25 + 4*s[1]^5*s[2]^10 + 2*s[1]*s[4]^6 + s[1]*s[2]^12).
(End)
Also the number of equivalence classes of ways of placing k 1 X 1 tiles in an n X n square under all symmetry operations of the square. - Christopher Hunt Gribble, Feb 17 2014
From Wolfdieter Lang, Oct 03 2016: (Start)
The cycle index G(n) for a square n X n grid with squares coming in two colors with k squares of one color is for the D_4 group (with 8 elements R(90)^j, S R(90)^j, j=0..3)
(s[1]^(n^2) + s[2]^(n^2/2) +2*s[4]^(n^2/4))/8 + (s[2]^(n^2/2) + s[1]^n*s[2]^((n^2-n)/2))/4 if n is even,
s[1]*((s[1]^(n^2-1) + s[2]^((n^2-1)/2) + 2*s[4]^((n^2-1)/4))/8) + s[1]^n*s[2]^(n*(n-1)/2)/2 if n is odd.
See the above comment by Geoffrey Critzer for n=2..5.
The figure counting series is c(x) = 1 + x for coloring, say black and white.
Therefore the counting series is C(n,x) = G(n) with substitution s[2^j] = c(x^(2*j)) = 1 + x^(2^j) for j=0,1,2. Row n gives the coefficients of C(n,x) in rising (or falling) order. This follows from PĆ³lya's counting theorem. See the Harary-Palmer reference, p. 42, eq. (2.4.6), and eq. (2.2.11) with n=4 on p. 37 for the cycle index of D_4.
(End)
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 42, (2.4.6), p. 37, (2.2.11).
EXAMPLE
T(3,2) = 8 because there are 8 nonisomorphic 3 X 3 binary matrices with two ones under action of D_4:
[0 0 0] [0 0 0] [0 0 0] [0 0 0]
[0 0 0] [0 0 0] [0 0 1] [0 0 1]
[0 1 1] [1 0 1] [0 1 0] [1 0 0]
---------------------------------
[0 0 0] [0 0 0] [0 0 0] [0 0 1]
[0 1 0] [0 1 0] [1 0 1] [0 0 0]
[0 0 1] [0 1 0] [0 0 0] [1 0 0]
Triangle T(n,k) begins:
1;
1, 1;
1, 1, 2, 1, 1;
1, 3, 8, 16, 23, 23, 16, 8, 3, 1;
MATHEMATICA
(* As a triangle *) Prepend[Prepend[Table[CoefficientList[CycleIndexPolynomial[
GraphData[{"Grid", {n, n}}, "AutomorphismGroup"], Table[Subscript[s, i], {i, 1, 4}]] /. Table[Subscript[s, i] -> 1 + x^i, {i, 1, 4}], x], {n, 2, 10}], {1, 1}], {1}] // Grid (* Geoffrey Critzer, Aug 09 2016 *)
PROG
(Sage)
def T(n, k):
if n == 0 or k == 0 or k == n*n:
return 1
grid = graphs.Grid2dGraph(n, n)
m = grid.automorphism_group().cycle_index().expand(2, 'b, w')
b, w = m.variables()
return m.coefficient({b: k, w: n*n-k})
[T(n, k) for n in range(6) for k in range(n*n + 1)] # Freddy Barrera, Nov 23 2018
CROSSREFS
Cf. A014409, A019318, A054247 (row sums), A054772.
Sequence in context: A343555 A251660 A279453 * A240472 A366836 A007442
KEYWORD
easy,nonn,tabf
AUTHOR
Vladeta Jovovic, May 04 2000
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy