login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A058349
Number of connected labeled series-parallel posets on n nodes.
5
1, 2, 12, 122, 1740, 31922, 715932, 18978122, 580513260, 20125554242, 779832497532, 33398722757402, 1566656717322060, 79879485803841362, 4398701789915269212, 260166428897541369962, 16449181879032096013740, 1107112451498156565581282, 79030557433744270179981372
OFFSET
1,2
COMMENTS
Also, number of labeled blobs with n edges.
REFERENCES
R. C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, preprint, Sept. 26, 1991.
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39, page 133, g(n).
FORMULA
Read (1991) reference gives generating functions (see PARI code for one example).
A048172(n) = a(n)+A048174(n), n>1.
a(n) = (n-1)!*sum(k=1..n-1, binomial(n+k-1,n-1)*sum(j=1..k, binomial(k,j)*((sum(l=0..j-1, (binomial(j,l)*((-1)^(n-l+j-1)+1)*sum(r=1..j-l, binomial(j-l,r)*2^(j-l-r-1)*(-1)^(r-j)*sum(i=0..r, (r-2*i)^(n-l+j-1)*binomial(r,i))))/(n-l+j-1)!))))), n>1, a(1)=1. - Vladimir Kruchinin, Feb 19 2012
a(n) ~ n^(n-1) / (5^(1/4)*exp(n)*(2-sqrt(5)+log((1+sqrt(5))/2))^(n-1/2)). - Vaclav Kotesovec, Mar 09 2014
MAPLE
(continue from A053554) t1 := log(1+EGF053554): t2 := series(t1, x, 30); SERIESTOLISTMULT(t2);
MATHEMATICA
Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, 19}], y], y], 1]* Range[19]! (* Jean-François Alcover, Sep 21 2011, after g.f. *)
PROG
(PARI) /* Joerg Arndt, Feb 04 2011 */
x='x+O('x^55); t=x+2*(1-cosh(x));
Vec(serlaplace(serreverse(t))) /* show terms */
(Maxima) a(n):=if n=1 then 1 else (n-1)!*sum(binomial(n+k-1, n-1)*sum(binomial(k, j)*((sum((binomial(j, l)*((-1)^(n-l+j-1)+1)*sum(binomial(j-l, r)*2^(j-l-r-1)*(-1)^(r-j)*sum((r-2*i)^(n-l+j-1)*binomial(r, i), i, 0, r), r, 1, j-l))/(n-l+j-1)!, l, 0, j-1))), j, 1, k), k, 1, n-1); /* Vladimir Kruchinin, Feb 19 2012 */
CROSSREFS
A053554(n) = a(n) + A058350(n) (n>=2).
Sequence in context: A034524 A051782 A048173 * A375897 A013469 A372178
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Dec 16 2000
EXTENSIONS
More terms from Joerg Arndt, Feb 04 2011
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy