login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A061349
Sum of antidiagonals of A060736.
1
0, 1, 6, 17, 40, 75, 130, 203, 304, 429, 590, 781, 1016, 1287, 1610, 1975, 2400, 2873, 3414, 4009, 4680, 5411, 6226, 7107, 8080, 9125, 10270, 11493, 12824, 14239, 15770, 17391, 19136, 20977, 22950, 25025, 27240, 29563, 32034, 34619, 37360, 40221
OFFSET
0,3
COMMENTS
a(1) = 1, a(2) = 2+4=6, a(3) = 5+3+9=17, a(4) = 10+6+8+16=40.
FORMULA
a(n) = A005900(n) - A006918(n).
a(n) = a(n-1) + A001844(n-1) - A002378(A004526(n-1)).
a(n) = a(n-1) + n^2 + (n - 1)^2 - floor((n-1)/2)*floor((n+1)/2).
If n is odd then a(n) = (7*n^3 + 5*n)/12;
If n is even then a(n) = (7*n^3 + 8*n)/12.
From Colin Barker, Sep 13 2014: (Start)
a(n) = (n*(13 + 3*(-1)^n + 14*n^2))/24.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
G.f.: x*(x^4 + 4*x^3 + 4*x^2 + 4*x + 1)/((x - 1)^4*(x + 1)^2). (End)
E.g.f.: x*((12 + 21*x + 7*x^2)*cosh(x) + (15 + 21*x + 7*x^2)*sinh(x))/12. - Stefano Spezia, Jun 05 2023
MATHEMATICA
LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 1, 6, 17, 40, 75}, 50] (* Harvey P. Dale, Oct 17 2021 *)
Accumulate[Table[n^2 + (n - 1)^2 - Floor[((n-1)/2)]*Floor[((n+1)/2)], {n, 41}]] (* Stefano Spezia, Jun 05 2023 *)
PROG
(PARI) concat(0, Vec(x*(x^4+4*x^3+4*x^2+4*x+1)/((x-1)^4*(x+1)^2) + O(x^100))) \\ Colin Barker, Sep 13 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 07 2001
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy