login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A068049
The first term greater than one on each row of A068009. a(n) = A068009[n, A002024[n]].
4
2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 4, 3, 3, 2, 2, 2, 5, 4, 3, 3, 2, 2, 2, 6, 5, 4, 3, 3, 2, 2, 2, 7, 6, 5, 4, 3, 3, 2, 2, 2, 9, 7, 6, 5, 4, 3, 3, 2, 2, 2, 11, 9, 7, 6, 5, 4, 3, 3, 2, 2, 2, 13, 11, 9, 7, 6, 5, 4, 3, 3, 2, 2, 2, 16, 13, 11, 9, 7, 6, 5, 4, 3, 3, 2, 2, 2, 19, 16, 13, 11, 9, 7, 6, 5
OFFSET
1,1
COMMENTS
In row 1 of A068009 the first term > 1 is found at position 1, for rows 2 & 3 at position 2, for rows 4,5,6 at position 3, for rows 7,8,9,10 at position 4 etc., thus it is natural to view this also as a triangular table.
LINKS
MAPLE
[seq(A000009(A025581(j-1))+1, j=1..99)];
A025581 := n-> binomial(1+floor(1/2+sqrt(2+2*n)), 2)-(n+1);
N := 100; t1 := series(mul(1+x^k, k=1..N), x, N); A000009 := proc(n) coeff(t1, x, n); end;
MATHEMATICA
a[n_] := PartitionsQ[(1/2)(Floor[Sqrt[2n]+1/2]^2 + Floor[Sqrt[2n]+1/2] - 2n)] + 1; Array[a, 100] (* Jean-François Alcover, Mar 02 2016 *)
CROSSREFS
a(n) = A000009(A025581(n-1))+1. Specifically, the left edge is equal to A000009[n]+1 (i.e. apart from the first term = A052839) and the right edge is all-2 sequence A007395.
Sequence in context: A359238 A378309 A320011 * A297850 A171092 A141256
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Feb 11 2002
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy