login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Combined Diophantine Chebyshev sequences A077246 and A077244.
3

%I #14 Feb 11 2014 05:23:44

%S 2,3,13,22,102,173,803,1362,6322,10723,49773,84422,391862,664653,

%T 3085123,5232802,24289122,41197763,191227853,324349302,1505533702,

%U 2553596653,11853041763,20104423922,93318800402

%N Combined Diophantine Chebyshev sequences A077246 and A077244.

%C 3*a(n)^2 - 5*b(n)^2 = 7, with the companion sequence b(n)= A077247(n).

%C Positive values of x (or y) satisfying x^2 - 8xy + y^2 + 35 = 0. - _Colin Barker_, Feb 08 2014

%H Vincenzo Librandi, <a href="/A077248/b077248.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F a(2*k)= A077246(k) and a(2*k+1)= A077244(k), k>=0.

%F G.f.: (1-x)*(2+x)*(1+2*x)/(1-8*x^2+x^4).

%e 13 = a(2) = sqrt((5*A077247(2)^2 + 7)/3) = sqrt((5*10^2 + 7)/3)= sqrt(169) = 13.

%t CoefficientList[Series[(1 - x) (2 + x) (1 + 2 x)/(1 - 8 x^2 + x^4), {x, 0, 30}], x] (* _Vincenzo Librandi_, Feb 11 2014 *)

%K nonn,easy

%O 0,1

%A _Wolfdieter Lang_, Nov 08 2002

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy