login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A084567
Binomial transform of (1,-1,4,-16,64,-256,1024,...) = (3*0^n-(-4)^n)/4.
6
1, 0, 3, -6, 21, -60, 183, -546, 1641, -4920, 14763, -44286, 132861, -398580, 1195743, -3587226, 10761681, -32285040, 96855123, -290565366, 871696101, -2615088300, 7845264903, -23535794706, 70607384121, -211822152360, 635466457083, -1906399371246
OFFSET
0,3
COMMENTS
Partial sums of (1,-1,3,-9,27,-81,....) (with g.f. (1+2x)/(1+3x) ).
FORMULA
G.f.: (1+2*x)/((1-x)*(1+3*x)).
G.f.: 1+ x -x/Q(0), where Q(k) = 1 + 3*x^2 + (3*k+4)*x - x*(3*k+1 + 3*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
MATHEMATICA
CoefficientList[Series[(1 + 2 x)/((1 - x) (1 + 3 x)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 07 2013 *)
LinearRecurrence[{-2, 3}, {1, 0}, 30] (* Harvey P. Dale, Aug 26 2024 *)
PROG
(PARI) Vec((1+2*x)/((1-x)*(1+3*x))+O(x^66)) \\ Joerg Arndt, Jul 14 2013
(Magma) I:=[1, 0]; [n le 2 select I[n] else -2*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 07 2013
CROSSREFS
Cf. A054878 (absolute values).
Sequence in context: A148623 A259273 A054878 * A294527 A261582 A135686
KEYWORD
easy,sign
AUTHOR
Paul Barry, May 30 2003
EXTENSIONS
Removed incorrect g.f. and e.g.f., Joerg Arndt, Jul 14 2013
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy