login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = polygorial(n,3)/polygorial(3,n), n >= 3.
8

%I #31 May 02 2022 08:14:34

%S 1,5,45,630,12600,340200,11907000,523908000,28291032000,1838917080000,

%T 141596615160000,12743695364400000,1325344317897600000,

%U 157715973829814400000,21291656467024944000000

%N a(n) = polygorial(n,3)/polygorial(3,n), n >= 3.

%H G. C. Greubel, <a href="/A085356/b085356.txt">Table of n, a(n) for n = 0..220</a>

%H Daniel Dockery, <a href="https://web.archive.org/web/20140617132401/http://danieldockery.com/res/math/polygorials.pdf">Polygorials, Special "Factorials" of Polygonal Numbers</a>, preprint, 2003.

%F a(n) = polygorial(n+3, 3)/polygorial(3, n+3) = (n+1)!^2*(n+2)*(n+3)*(n+4)/(2^n*24) = A067550(n+2)/2.

%F a(n) ~ (1/12)*Pi*n^(2*n+6)/(2^n*exp(2*n)). - _Ilya Gutkovskiy_, Dec 17 2016

%F D-finite with recurrence 2*a(n) = (n+4)*(n+1)*a(n-1). - _R. J. Mathar_, Mar 12 2019

%p a := n->(n+1)!^2*(n+2)*(n+3)*(n+4)/2^n/24; [seq(a(j),j=0..15)];

%p seq(mul(binomial(k,2)-binomial(k,1), k =5..n), n=4..18 ); # _Zerinvary Lajos_, Aug 07 2007

%t polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[3, #]/polygorial[#, 3] &, 17, 3] (* _Robert G. Wilson v_, Dec 13 2016 *)

%Y Cf. A067550, A084939, A084940, A084941, A084942, A084943, A084944.

%K easy,nonn

%O 0,2

%A Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy