login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A086602
a(n) = A000217(A000217(n))-n^2.
13
0, 0, 2, 12, 39, 95, 195, 357, 602, 954, 1440, 2090, 2937, 4017, 5369, 7035, 9060, 11492, 14382, 17784, 21755, 26355, 31647, 37697, 44574, 52350, 61100, 70902, 81837, 93989, 107445, 122295, 138632, 156552, 176154, 197540, 220815, 246087
OFFSET
0,3
LINKS
Q. T. Bach, R. Paudyal, J. B. Remmel, A Fibonacci analogue of Stirling numbers, arXiv preprint arXiv:1510.04310 [math.CO], 2015-2016.
FORMULA
a(n) = A000330(n-1)+A001295(n-1). - Alford Arnold, Jun 29 2005
a(n) = 3*C(n+2,4) - C(n,2). - Zerinvary Lajos, May 02 2007, corrected Jun 12 2018
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) = n*(n-1)*(n^2+3*n-2)/8. [R. J. Mathar, Oct 30 2009]
G.f.: x^2*(-2-2*x+x^2)/(x-1)^5. [R. J. Mathar, Oct 30 2009]
a(n) = (n-1)*A005581(n) - Sum_{i=0..n-1} A005581(i). [Bruno Berselli, Aug 27 2014]
EXAMPLE
a(3) = t(t(3))-3^2 = t(6)-9 = 21-9 = 12.
MAPLE
seq(3*binomial(n+2, 4)-binomial(n, 2), n=0..35); # Zerinvary Lajos, May 02 2007
MATHEMATICA
Table[n (n - 1) (n^2 + 3 n - 2)/8, {n, 0, 40}] (* Bruno Berselli, Aug 27 2014 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 2, 12, 39}, 60] (* Harvey P. Dale, Apr 04 2023 *)
PROG
(PARI) t(i)=i*(i+1)/2
vector(40, i, t(t(i))-i^2)
(Magma) [n*(n-1)*(n^2+3*n-2)/8: n in [0..40]]; // Vincenzo Librandi, Jun 26 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Jul 23 2003
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy