login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094415
Triangle T read by rows: dot product <r,r-1,...,1> * <s+1,s+2,...,r,1,2,...,s>.
10
1, 4, 5, 10, 13, 13, 20, 26, 28, 26, 35, 45, 50, 50, 45, 56, 71, 80, 83, 80, 71, 84, 105, 119, 126, 126, 119, 105, 120, 148, 168, 180, 184, 180, 168, 148, 165, 201, 228, 246, 255, 255, 246, 228, 201, 220, 265, 300, 325, 340, 345, 340, 325, 300, 265, 286, 341
OFFSET
0,2
FORMULA
T(n, k) = n*(n^2 + 3*n*(1+k) + 2 - 3*k^2)/6 for n >= 0, 0 <= k <= n.
EXAMPLE
Triangle begins as:
1;
4, 5;
10, 13, 13;
20, 26, 28, 26;
35, 45, 50, 50, 45;
56, 71, 80, 83, 80, 71;
MAPLE
seq(seq( (n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6 , k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
MATHEMATICA
Table[(n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6, {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
PROG
(PARI) T(n, k) = (n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6;
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Oct 30 2019
(Magma) [(n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6: k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
(Sage) [[(n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6 for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> (n+1)*((n+2)*(n+3) + 3*k*(n-k+1))/6 ))); # G. C. Greubel, Oct 30 2019
CROSSREFS
Half-diagonal is A050410.
Row sums are A000537.
See also A094414, A088003.
Sequence in context: A376653 A058335 A222353 * A114517 A283246 A236283
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, May 02 2004
STATUS
approved

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy